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MASTER-3.0 Methodology

Abstract

MASTER-3.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a 

nuclear design code based on the multi-group diffusion theory to calculate the steady-state 

and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal 

geometry. Its neutronics model solves the space-time dependent neutron diffusion equations 

with NIM (Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic 

Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal 

Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian 

geometry and with NTPEN (Non-linear Triangle-based Polynomial Expansion Nodal 

Method), AFEN (Analytic Function Expansion Nodal)/NEM Hybrid Method or NLFM 

(Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov 

Subspace method, energy group restriction/prolongation method and asymptotic 

extrapolation method are implemented to accelerate the convergence of iteration process. 

MASTER-3.0 performs microscopic depletion calculations using microscopic cross sections 

provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin 

information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic 

Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P or 

MATRA model can be used selectively. In addition, MASTER-3.0 is designed to cover 

various PWRs including SMART as well as WH- and CE-type reactors, providing all data 

required in their design procedures.
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1. Introduction

Korea Atomic Energy Research Institute (KAERI) has recently developed the 

nuclear design code MASTER-3.0 (Multi-purpose Analyzer for Static and Transient 

Effects of Reactor) for the core design of pressurized water reactors (PWRs) based on 

the reactor physics technologies accumulated through joint R&D programs with 

leading vendors and more than ten years of experiences in nuclear design activities 

regarding WH, CE and FRAMATOME reactors.

Since most core analysis codes are designed for specific reactor types, they have 

some restrictions or inconvenience in applying them to reactors built by other vendors. 

Considering these aspects the MASTER-3.0 code is designed to be applicable for 

various types of reactors using advanced reactor physics methodologies, numerical 

analysis methods and modern programming techniques. It is also implemented with 

the standard FORTRAN-77 language on the UNIX operating system and Windows 

system.

MASTER-3.0 is designed to analyze the steady-state and transient core behaviors 

in a three-dimensional Cartesian or Hexagonal geometry based on the multi-group 

diffusion theory. The major calculation modules for the design application consist of 

depletion, steady-state flux, transient flux, pin power, pin burnup, xenon dynamics, 

adjoint flux, thermal hydraulics (T/H) and design specific activities including fuel 

management. These modules are integrated to constitute the MASTER-3.0 code 

package so that no extra efforts may be required for interfacing or transferring data 

between different calculation modules unlike other code systems.

MASTER-3.0 has several options for neutronics solution methods: the nodal 

expansion method (NEM), the nodal integration method (NIM), the analytic function 

expansion nodal method (AFEN), the non-linear nodal expansion method (NNEM) 

and the non-linear analytic nodal method (NANM) for Cartesian Geometry, and non­

linear triangle-based polynomial expansion method (NTPEN), analytic function 

expansion nodal method (AFEN) and the non-linear local fine-mesh method (NLFM)
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for hexagonal geometry. It performs fuel depletion using microscopic cross sections 

produced by CASMO-3 or HELIOS. In order to preserve quantities of heterogeneous 

solution within an assembly it employs the equivalence theory with the assembly 

discontinuity factor (ADF) as well as the simplified equivalence theory (SET) 

introducing the heterogeneity factor. All constants required to deplete nuclides are 

optionally fetched from CASMO-3 or HELIOS to keep consistency between cell and 

dimensional codes. Exceptionally, however, the delta macroscopic cross section 

concept is used for control rods and the equivalent macroscopic cross section based on 

SET is provided for radial reflectors. The equivalent reflector cross sections in the 

rectangular geometry are provided beforehand through one-dimensional modeling so 

that they can preserve all quantities of the response matrix elements in the 

heterogeneous geometry of the core-reflector interface region. This concept is extended 

to the L-shape reflectors by an approximation of scattering cross sections. While in the 

hexagonal geometry, the equivalent reflector cross sections are determined from the 2- 

dimensional HELIOS calculation with the actual heterogeneous core-reflector node 

representation.

MASTER-3.0 Methodology

The solution methods for the transient flux calculation module in MASTER-3.0 are 
identical to those of steady-state flux calculation module except for the additional 
solution methods regarding time-discretization. For this purpose the implicit first 

order Euler method combined with frequency transformation is used. The transient 
flux calculation module predicts the core average power, T/H related quantities and 
detailed fuel pin powers at rapid changes of reactor conditions such as control rod 
position, boron concentration, inlet mass flow, inlet temperature and pressure. Any 
transient calculation can be started with an arbitrary convergent steady-state reactor 
core solution. At each time step, the sequence of neutronics calculation followed by 
T/H with updating processes is gone through once, then the transient time is 
advanced. The time step width is automatically determined after checking the 
behavior of relative changes of the neutronic and T/H solutions during the time step.

MASTER-3.0 has the microscopic depletion module consistent to the spectral 

codes: CASMO-3 and HELIOS. It contains depletion modules for fuel, burnable poison 

and fission product. MASTER-3.0 uses the fully or semi weighted predictor-corrector 

method to minimize the errors coming from a relatively large time step. Those
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methods were turned out to be very accurate for both normal and burnable poisoned 

fuel assemblies even with a large time step. Meanwhile, since the nodewise cross 

sections are generated through the flux and volume weighting with the reflective 

boundary condition, neglecting the large intranodal cross section gradients induced by 

depletion and thermal feedback leads to a deterioration of accuracy of the modern 

advanced nodal methods. Thus, the burnup correction model is included to take into 

account the spatial dependence of cross sections in solving the equivalent one­

dimensional diffusion equation for the transverse integrated flux.

In MASTER-3.0 two different core T/H calculation modules are optionally 

available depending upon the nature of problems to solve: One is to use the fuel 

temperature versus linear power density table for simple T/H calculations and the 

other is to apply the detailed T/H codes, COBRA3-C/P and MATRA, for steady-state 

and transient thermal analysis of rod bundle nuclear fuel elements which is 

intrinsically integrated in the code. Even though the simple table might be accurate 

enough to estimate T/H conditions for the normal steady-state operation, COBRA3- 

C/P or MATRA can be used to simulate more sophisticated transient reactor 

conditions in view of T/H.

MASTER-3.0 calculates the local heterogeneous fuel pin power distributions in 

each axial segment within fuel assembly by modulation of the local homogeneous 

distributions based on the Method of the Successive Smoothing with Improved 

Analytic Solution (MSS-IAS) and heterogeneous power formfunctions. These pin 

power distributions are served to yield the axially integrated pin powers.

The detailed fuel pin burnup is accumulated using the pin powers in a similar 

fashion to the node burnup. During depletion calculation, the pin power from the 

previous case is weighted with that from the present one to yield the average pin 

power for this depletion step. Since the burnup is proportional to the power 

integration over time, the increase of pin burnup is directly calculated by multiplying 

the node average burnup increase by the pin-to-node power ratio. This change is then 

added to the existing pin burnup.

MASTER-3.0 Methodology
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MASTER-3.0 Methodology

During reactor operation the reactor core can be placed in a slow transient state 

induced by load follow operations. Using the xenon dynamics module in MASTER-3.0 
such a behavior can be traced by solving iteratively the time-dependent iodine/xenon 
and promethium/ samarium differential equations with the steady-state flux solution 
process. The iteration process is performed until the flux shapes and their 
concentrations are converged.

In addition to the steady-state solution an adjoint module has been included in 
MASTER-3.0. This module calculates the adjoint flux with the forward steady-state 
solution and the kinetic parameters such as effective delayed neutron fractions, 
delayed neutron precursor decay constants and prompt neutron life time.

The control rod model has been implemented in MASTER-3.0 considering the 
heterogeneous effects of partially inserted rod. This uses the flux volume weighted 
cross sections to minimize cusping effects in the axial direction.

The iterative process to obtain the solution is accelerated either by the well-known 

Coarse-mesh rebalancing (CMR) procedure with the vectorized Gauss-Seidel method 

or by the Krylov Subspace method or by energy group restriction/prolongation 

method depending on the neutronics solution methods. As an additional acceleration 

procedure the asymptotic extrapolation is employed for the acceleration of the 

neutronics solutions for partial currents, transverse leakages and neutron fluxes.

A backward nodal method which determines absorption cross sections in order to 

obtain the given fluxes and eigenvalue is also implemented in MASTER-3.0. It is of use 

for various design and analysis applications such as axial power shape matching.

MASTER-3.0 is designed to provide the required information for SMART as well 

as WH- and CE-type reactors which have different design procedures and 

requirements each other. For example, it can produce all data required in WH-type 

design procedure, whereas it is able to describe a 12-finger type of control rods, 

depletion of Rh-detector and power-to-reaction rate coefficients w' of detector 

position which are needed for the CE-type reactor design.

Korea Atomic Energy Research Institute
4

Rev. 0



The goal of this report is to describe in detail the methodologies employed in each 

module of MASTER-3.0. The following sections start with derivation of the neutronics 

solution, the primary part of this code, and in turn include assembly homogenization, 

reflector modeling, reconstruction, depletion, burnup correction, T/H feedback, 

iteration strategy, kinetic parameters, modeling of control rod and detector and xenon 

dynamics.

MASTER-3.0 Methodology
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2. Steady-State Neutronics Methodology

2.1 Cartesian Geometry

2.1.1 Nodal Expansion Method

The nodal expansion method (NEM) [1,2,3] starts with the multigroup neutron diffusion 

equation in Pi-form.

V • Jg (r) + [Itl!, (r) + t (r)]cpg (r)
(2.1-la)

t Z„.„(r)(p8.(r) + lt t X’8v£i8.(r)<p8.(r)+x„S“(r)
p-'<p- K p-' i

Jg(r)+Dg(r)V(pg(r) = 0 (2.1-lb)

where (p = neutron flux in group g,

J = neutron current in group g,

X absorption cross section in group g,

scattering cross section from g' to g,

= V -fission cross section of fissionable isotope j in group g,

k = eigenvalue,

Xpg = prompt fission spectrum of fissionable isotope j in group g, 

%ex = external source spectrum in group g,

= external source in group g.

Integrating Eq. (2.1-1) over a node volume leads to the exact nodal balance equation as 

follows:

Korea Atomic Energy Research Institute Rev. 0
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t -lib+o)-b+e 1+(t;+t
g'>g

= t %% + A t X'8vZ[^"

+ m 
Jgus Jgus du s

(2.1-2a)

(2.1-2b)

where a “ = mesh size in the direction u (=x,y,z) of node m,

jg” = incoming and outgoing currents in group g at the surfaces s

(=l,r) of node m.

The notations are clarified in Fig. 2-1. The surface average fluxes are defined by

Vgus '(pg(r)dvdw
0 0

(2.1-3)

where A” = transverse area to u-direction.

The surface average fluxes can be expanded into a quartic polynomial

<(u) = t a(2.1-4)
i=0

where ^0(u) = 1,

^1(u) = 2u-l/

^2(u) = 6u(l - u) -1,

^3(u) = 6u(1-u)(2u-1)/

(u) = 6u(l - u)(5u2 - 5u +1).
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The first three coefficients of the right hand side of Eq. (2.1-4) can be expressed by nodal 

balance equations and continuity conditions, and the third and fourth order coefficients 

a3 and a4gu can be determined by solving the 1-dimensional equivalent diffusion 

equations:

e'>g

= t yyv-.+A t x'gv4"v?„-D"L"„
^ % j

(2.1-5)

where Lgu
A”

' '(

0 0 dv
- + -^)(p (r)dvdw 

dw 8

To find a0gu one can integrate the transverse integrated flux over the u-direction and 

to obtain a lgu and a2gu one can evaluate the transverse integrated flux at the surfaces of

the node in the u-direction. The complete polynomial form of Eq. (2.1-4) can be then 

written as follows:

V,. (u) = + (u)+(<t>g - (u) (21.6)

+ a3gu^(u)+a^4(u).
4gu

Using the diffusion theory expression \|/™s = 2(jg“ + jg”) and inserting Eq. (2.1-6) into Eq.

(2.1-2b), the equations for the outgoing currents on the left and right surfaces are given as 

functions of the incoming currents and the nodal flux.

Jgul = c lgu

+m
Jgur

(^ + a^) + c^j^+c^j^

(4>r+a%u) + c^j^+c!W^

— r r\L'4gua3gu

+ 0:%.
(2.1-7)

The coefficients of the outgoing currents equations are rational functions of Dgu=Dg/au,

Korea Atomic Energy Research Institute
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where D” is the diffusion constant of energy group g.

D
gu

-lgu l/6 + 2D^
C2gu -1-4cigu -C3guz

lgu 3gu (2.1-8)

-c
C3gu -

lgu

3/4 + 3D^
C4gu 6Dguc3gu.

The final form of the nodal balance equations Eq. (2.1-2a) becomes

(t +1
2c lgu

X88 m T8 
u=x,y,z rtu

t Eg'gC' +-t t XpSvEfg4”
k

+ t mtK1 -c”gu - ctufc + }Z)-2cLaL ]
u=x,y,z au

(2.1-9)

and this can be solved iteratively.

According to the weighted residual method, integrating Eq. (2.1-5) with the weighting 

function ^ or presented in Eq. (2.1-4) results in the following form:

(60^L + Z8)a%„=-|l8al8„

,5.+ t Eg'g(Aaigu +a3gu)

+ t (l4aigu +a3gu)Tt Jpg171!,,/
g' 3 « j

_3Dgbigu

(2.1-10a)
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(2.1-10b)

where Zg = Z,g Zgg,,
g>g

blgu ,b2gu = coefficients of the transverse leakage expansion function (see Eq.(5-1)).

One can obtain the coefficients a3gu and a 4gu with Eqs. (2.1-10a) and (2.1-10b). For the

acceleration of an iterative solution, a vectorized red-black Gauss-Seidel method, a multi­

level coarse-mesh rebalancing and an asymptotic extrapolation are used. These will be 

discussed for details later in this manual.

+ +m
x

y
a

Figure 2-1 Illustration of Mesh Geometry
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2.1.2 Nodal Integration Method

The Nodal Integration Method (NIM) [4] is shortly characterized by exact integration of 

resulting 1-dimensional equation with the transverse leakage shape approximated by a 

parabola. The starting point for the derivation of NIM is a set of equivalent 1-D diffusion 

equations.

Dr

D2

d>lu
du2
d>2u
du2

“^rlVlu +—T^-Vau -D2L^ 
k

~~ + ^12Vlu = D2L2u

where Dg = diffusion coefficient of group g,

Lgu = transverse leakage of group g in u-direction, 

y - y i y V^fi
k

(2.1-11)

The transverse leakage Lgu is orthogonal to the spatial direction u. The equations 

above can be rewritten as

d2X|/lu T
-^-CiViu +c2V2u =Liu
du (2.1-12)

-7%- - c3V2u + c4Viu = L2u (u = X, y, z)
du~

where c2
vE f 2
Dxk >c3 Ja2

D, >c4 D,

This is a coupled system of ordinary, linear, inhomogeneous differential equations of 

second order with constant coefficients. The equations above can be solved analytically 

with a quadratic approximation of the one-dimensional transverse leakages

Korea Atomic Energy Research Institute
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L
gu

2

= t

where i;0(u) = l,

^1(u) = 2u-l/

(;2(u) = 6u(l-u)-l.

The solution can be expressed as

Yiu =k1coshK,u + k2sinhK1u + oc(k3cosK2u + k4sinK2 

X|/2u = (3(k1coshK,u + k2sinhKjU) + k3cosK2u + k4sinK

The eigenvalues are derived from

K 1,2

The coupling parameters are

a =

The solution is simplified in reflector nodes since a vanishes, 

follows:

Kf =C!'K2 =C3,C4 *c3.

(2.1-13)

u) + t fiv^v(u) (2.1-14)
v=0

2U +t k\L(u)
v=0

(2.1-15)

(2.1-16)

The eigenvalues are as

Korea Atomic Energy Research Institute
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The flux continuity condition is used to determine the coefficients f of the inhomogeneous 

part of the solution. The node average flux cf>g results from the integration of the 1-D flux 

solution over the total node length in u-direction.

i 1\ ,
»«=- Vg-du 

a 0
(2.1-17)

where a = node width.

The integration of Eq. (2.1-17) leads to the following matrix:

OsinhKja
of10"_OCh"_y K,a

LA UpsinhK'a
0 Kia

coshiqa -1 sinK^a
-------------- a----- —

K,a K2a
coshx.a -1 sinK,aP--------------K,a K2a

1 - cosK^a
a---------- —

K2a
1 - cosK2a

K2a

(2.1-18)

The coefficients fgl and f 2 are obtained by inserting Eq. (2.1-14) into Eq. (2.1-12) and by

comparing the coefficients of the linearly independent expansion functions q, and q2 , 

respectively.

h ..A. i.:ii (1M’2)' (2.1-19)

The node boundary conditions are used to determine the integration constants k; (ml,..,4) 

and written as

4] +
gul

4jgur

= Vg(0)-2Di 

= Vg(a) + 2D

#gu

du

dVgu

du

u=0
(2.1-20)
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where jgul = incoming current on the left boundary of a node, 

jgur = incoming current on the right boundary of a node.

The incoming currents of the node concerned are obtained using the continuity conditions. 

To simplify notation the incoming current vector J“ is written as

j ;"=[)!„. jL.h„,o;JT (2.1-21)

where the superscript T denotes transposition.

In the same manner the following vectors are introduced.

^2, (h, *2r (2.1-22)

6 D1 d9 d1 d9
V = 4 jj----- (fn + 3f12), ------- (f21 + 3f22),----- (fu - 3f12),----- (f21 - 3f22 )A

u a a a a B

W = [ - fu - fi2, - f21 - f22, fu - f12, f21 - f22 ]T

The evaluation of the node boundary conditions then results in

4J: =Q[k1,k2,k3/k4]T+V + W+ # (2.1-23)

where Q is a 4x4 matrix. The constants k; are formally determined by the incoming 

currents, the node average fluxes and the transverse leakages. For the construction of an 

efficient iteration algorithm the diffusion boundary condition

Vu=2(J:+0 (2.1-24)

yields

Korea Atomic Energy Research Institute
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- —P [k1/k2/k3/k4]T+ —(W+ $-J” (2.1-25)

where P is a 4x4 matrix. By eliminating the integration constants the outgoing currents in 

direction u can be obtained. Denoting the fourth order unity matrix as I4 leads to the 

resulting outgoing current equation

J out
u -i4)(4ji;-vu-wu (2.1-26)

The multiplication of matrices PQ 1 can favorably be partitioned into 2x2 submatrices E 

and F, respectively to reveal its high degree of symmetry.

PQ 1
oE F 
SjF E# (2.1-27)

The node average fluxes are solutions of the nodal balance equation in which the nodal 

leakage is represented by the difference between incoming and outgoing currents. If the 

outgoing currents are eliminated from the nodal balance equation, the node average fluxes 

can be calculated as functions of the incoming currents and the transverse leakages.

The corresponding nodal balance equation is written in matrix notation

cb.i 

8-z 21

VEr

'a2

p\>, [i, i,] t — (i-o
a„

(2.1-28)
u=x,y,z

After the outgoing currents J°ut are eliminated in this equation and some mathematical 

manipulations are performed, the nodal balance equation for the determination of the node 

average flux can be obtained :
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UEn -Hii
VEr

-H12
- H21 1121 Ea2 -H22 (2.1-29)

=[i2 Nt 2-kQ;' -i.xv.+w. -wn+vj
u=x,y,z 2a

where Hn t r(Euii+Fuii-l), H12 t ”(EU12 +Fu12),

H 21 t ----(Eu21+Fu2i)z H
u=x/y/z au

22 t ----(Eu22+Fu22-1).
u=x,y,z &u

2.1.3 AFEN/NEM Hybrid Method

Analytic Function Expansion Nodal Method (AFEN) [5,6] directly solves the multi­

dimensional diffusion equation instead of the transverse-averaged one-dimensional one. It 

is based on analytic basis functions satisfying the diffusion equation at any points of the 

node. The flux expansion consisting of basis functions includes non-separable cross terms 

which are coupled to other spatial directions. AFEN determines all nodal unknowns such 

as node average, surface average and corner-point fluxes by means of the nodal coupling 

equations which comprise the nodal balance equation for node average flux, the interface 

current continuity condition for surface fluxes and Corner-Point Balance Method (CPB) [7] 

or Method of Successive Smoothing (MSS) [8] for corner fluxes. In the AFEN/NEM hybrid 

method [9], NEM is used for the axial direction where the neutronic coupling is relatively 

weak compared to the radial direction. For the application of coarse-mesh rebalancing 

(CMR) acceleration scheme [9] , a response matrix formulation of the AFEN/NEM hybrid 

method is derived.

In order to solve the two-group two-dimensional diffusion equation, // is defined as
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the eigenvalue of matrix (Dn) 1 [ E1 — (1 / ke±T) V ] and Rn as the 2x2 matrix with 

columns of the corresponding eigenvectors. In addition, % is introduced as:

!T(x,y) = (RTe(x,y) (2.1-30)

which satisfies the partial differential equation:

V’t;(x,y)-y^(x,y) = 0 (2.1-31)

The general solution of the above equation can be expressed in the following form:

§:<x,y) = t {A"SNK"(aVx + a"y)+B"CSK"(a" x + a"y)> (2.1-32)

where

gy^

SNK;%x + a^y) = 0
tisinh k“ (a' i^+aLy)
gsin K;(aMx + aMy)

^>0
y <«'

CSK;(a-.x + a-,y, = rh«“gxi X + <yiY)
uCos<%x + «My)

X^>0
x-,<0-

The sets of (a A , a A ) are chosen as (1, 0), (0,1), (V2 / 2, 42/2) and (-V2/2, V2 / 2), which

are distributed 45 degrees apart on a unit circle. Thus, the intranodal flux expansion consists 

of a set of eight basis functions:
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S(x,y) = q+A;,sNK;x+A;,csic;x+A;,sN^y+A;,csic;y

-V2 ^ _ ____V2 . _V2
2 8

,V2 „ _V2______ .V2 „ _V2

2 8

+ B;,SN^xSN^K;y+B;,SN^K;xCS^K;y (2.1-33)

+ B;3CS^-qxSN^-qy+B;,CS^-K;xCS^-K;y

In the response matrix formulation of this method, however, interface partial currents 

are used as the nodal unknowns instead of corresponding surface fluxes. Once all the 

coefficients in the flux expansion are expressed in terms of the nodal unknowns for the 

response matrix formulation, we build as many solvable nodal coupling equations as the 

number of these unknowns to be determined.

The first set of nodal coupling equations to be solved for the node-average flux can be 

obtained by integrating Eq. (2.1-2a) over a node volume:

+ t ------ [<Jgdr -jgndr)+(jgd! “jgdl)]

d=x,y,z
(2.1-34)

t Eg'g4>g'+T—t %gvEfg'4>g'
g <g "eff g

The second set of nodal coupling equations for the surface average partial currents are 

derived by applying continuity condition of the net neutron currents across the node 

interface and the diffusion approximation relating partial currents with net currents and 

surface fluxes. The node outgoing partial current can then be expressed in terms of incoming 

partial currents, node average fluxes and corner fluxes. For example, the interface partial 

currents in x-direction on the right-hand side as illustrated in Fig. 2-2 is

Jout = =±F +P,
-J“+-

i> 1 __ p +p p _
-^J:+-(!-?,) $ + 8$ (2.1-35)

where J°ut = outgoing partial current at surface s, 

J” = incoming partial current at surface s, 

$ = node average flux,
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8(| = difference between averaged corner flux and corner flux determined at each 

adjacent node (s = 1, r),

P = coupling coefficient,

1 = unity matrix,

subscript r, 1 = right and left surfaces.

In the above equation, the coupling coefficients P 's are constant matrices whose elements 

depend on keff and the group constants of the node. The MSS or CPB can be used to solve 

the corner fluxes, which form the third set of nodal coupling equations. This will be 

described in details in Section 8.

The axial intranodal distribution in this method is determined by solving the transverse- 

integrated one-dimensional equivalent diffusion equation in the axial direction by the nodal 

expansion method (NEM), since the spatial coupling in the axial direction is relatively weak 

when compared to that for the radial direction.

~i?D"ih'"(z)+(t -"+t £«" - )v"(z)

s ^ (2.1-36)

= t y>"(z) + it t x’8vZ!"¥"(z)-Dg"L"(z)
g'<g K g' j

The term -DgLg(z) in Eq. (2.1-36) is the transverse leakage. The surface average flux \|/g(z) can 

be expanded into a quartic polynomial with orthogonal functions (see Eq. (2.1-4)). The 

outgoing partial currents on the left and right surfaces of a node in the axial direction are 

given by Eq. (2.1-7).
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2.1.4 Non-linear Nodal Expansion Method

In the non-linear nodal expansion method (NNEM) [10], both the coarse-mesh finite 

difference (CMFD) method and the two-node NEM method are used for the solution of the 

multi-group diffusion equation. The node current of the CMFD method is given as follows:

where D™
2D"" d;

u, m±l

The assumption of linear flux variation is not accurate for the large node size. Thus this 

method involves iterations between solutions of the CMFD problem and the two-node NEM 

problems. The CMFD problem incorporates the global coupling of the nodes while the two- 

node problems incorporates local higher order coupling. The method is nonlinear because 

the coefficient matrix for the CMFD problem contains the nodal coupling coefficients which 

need to be updated by the two-node calculations during the iteration.

In the two-node NEM calculation, the interface current is obtained by solving the NEM 

equations for the two-node problem in which the flux solution of the previous CMFD 

problem is used as the boundary condition. The two-node problem calculation is performed 

for every interface of all nodes and all directions to provide an improved estimate of the net 

current. The interface current is then used to determine a corrective nodal coupling 

coefficient, D™+ , such that the following expression can be reproduced for the NEM based 

interface current.

C = + D^ (*r ) +D;+ (*r +4C ) (2-1-38)

The next CMFD problem is formulated using the above relation for the current. The second 

term of RHS of Eq. (2.1-38) can be regarded as a correction term which corrects the error of 

the linear flux used to obtain the first term.
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The two-node problem produces 8 unknowns per energy group which can be solved 

with 8 conditions: two nodal balance equations, one current continuity condition, one flux 

continuity condition and four moment equations. The definition and derivation of NEM 

are the same as in Section 2.1.1.

2.1.5 Non-linear Analytic Nodal Method

The non-linear nodal analytic method (NANM) [11] is basically the same as the NNEM 

described in the preceding section except for the main kernel to update the interface current. 

For correction of the interface current, it uses the analytic nodal method (ANM) instead of 

NEM.

y

X,1

Figure 2-2 Indices of Partial Currents and Node Average Flux in a Rectangular Node
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2.2 Hexagonal Geometry

2.2.1 AFEN/NEM Hybrid Method

The AFEN method [12] directly solves the multi-dimensional diffusion equation instead 

of the transverse-integrated one-dimensional diffusion equations by expanding the solution 

into non-separable analytic basis functions, which satisfy the diffusion equation at any 

points of the node. The flux expansion consisting of basis functions includes non-separable 

cross terms which are coupled to other spatial directions. The AFEN method determines all 

nodal unknowns such as node average, surface average and corner-point flux by means of 

the nodal coupling equations which comprise the nodal balance equation and the interface 

current continuity condition. In the AFEN/NEM hybrid method [13], NEM is used for the 

axial direction where the neutronic coupling is relatively weak compared to the radial 

direction. For the application of coarse-mesh rebalancing (CMR) acceleration scheme, a 

response matrix formulation of the AFEN/NEM hybrid method is derived.

AFEN for two-dimensional geometry is based on decoupling the multigroup diffusion 

equations for a node n into the "mode-group" partial differential equations

V=y(x,y)-X"B^(x,y)=0 (2.2-1)

by defining ^n(x, y) = (Rn) 1 (j)n (x, y) . Here, Xng 's are the eigenvalues of matrix

(Dn) 1 [ E1 — (1 /ke±Y) V Z] ] and Rn is the matrix with columns of the corresponding 

eigenvectors. The general solution of the Eq. (2.2-1) can be expressed as:

1=0

where
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«j"+(ccr=i,gyi'

In the regular hexagonal node the AFEN method adopts one node-average flux, six 

interface fluxes, and six corner fluxes per group as the nodal unknowns and expands the 

intranodal flux distribution in the node into twelve analytic basis functions and one 

additional constant term. The sets of (a A, a A) in Eq. (2.2-1) are chosen with the same

constraints applied to the rectangular geometry. They are (1, 0), (0, 1), (Vl /2, 1/2), (-Vl /2,

1/2), (1/2, Vl /2) and (1/2, - Vl /2), which are the coordinates evenly distributed 30 degrees 

apart on a unit circle. Introducing three Cartesian coordinate systems, (x,y), (u,v) and (p,q) 

for the convenience of handling the hexagonal node, the intranodal flux distribution of the 

node is expressed as:

^(x,y) = q + A^SN^x + B^CS^x-t A^SN^y + B^CSi^y

+ A^SNi^p + B^CSi^p + A^SN^q + B^CSi^q (2.2-3)

+A;,SN^u+B;,csic;u+A;,SNic;v+s^cs^v

where
i Vi Vs i i Vs Vs i

u = — x------y, v = — x — y, p = — x-l----- y, q =------ x — y.
22 22 22 22

In the response matrix formulation of this method [13], however, interface partial 

currents are used as the nodal unknowns instead of corresponding surface fluxes. Once all 

the coefficients in the flux expansion Eq. (2.2-3) are expressed in terms of the nodal 

unknowns for the response matrix formulation, we build as many solvable nodal coupling 

equations as the number of these unknowns to be determined. The first set of nodal 

coupling equations to be solved for the node-average flux can be obtained by integrating Eq.
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(2.1-2a) over a node volume. The second set of nodal coupling equations for the surface 

average partial currents are derived by applying continuity condition of the net neutron 

currents across the node interface and the diffusion approximation relating partial currents 

with net currents and surface fluxes. The node outgoing partial current can then be 

expressed in terms of incoming partial currents, node average fluxes and corner fluxes. For 

example, the interface partial currents in x-direction on the right-hand side as illustrated in 

Fig. 2-3 is

TOUt
Jx,r

1 T I’ jin _j_ * 1*2 Tm

x,l

jin jin jin Tin

+ (P3+P4)-^-----^ + (P3-P4) ^ P’r

+ (P,+PJ^^'+(P,-PJ
2

ft.l +

+ p7 ^1 ^ + ^-(I + Pt + 2P3 + 8P5 + 4P7) $

(2.2-4)

where

Jj.

ft,

pt

= outgoing partial current vector in d- direction at surface s, 

= incoming partial current vector in d- direction at surface s, 

= corner flux vector in d-direction at surface s,

= node average flux vector,

= coupling coefficient matrix.

In the above equation, the coupling coefficients are constant matrices whose elements 

depend on keff and the group constants of the node. By applying the corner point balance 

(CPB) scheme for the corner flux evaluation in hexagonal node, the set of nodal coupling 

equations for the corner-point fluxes can be derived in terms of surface average fluxes and 

node average fluxes. It forms the third set of nodal coupling equations and it will be 

described in details in Section 8.2.2.

The axial intranodal distribution is determined by solving the transverse-integrated one-

Korea Atomic Energy Research Institute
24

Rev. 0



MASTER-3.0 Methodology

dimensional equivalent diffusion equation in the axial direction by the nodal expansion 

method (NEM). The definition and derivation of NEM are the same as in Section 2.1.3.

2.2.2 Non-linear Local Fine-mesh Method

The objective of the two-node problem to be solved for the application of the nonlinear 

iteration technique is to find the surface-averaged current at the interface of the two nodes, 

given the group constants, keff, current profiles at the transverse surfaces, and node average 

fluxes. To accomplish the objective, the intra-nodal flux distribution satisfying the 

constraint on the node average fluxes should be determined first. The intranodal flux 

distribution within the two hexagons can be represented in terms of mesh-averaged fluxes 

if the finite difference scheme is used. [14]

Suppose that a hexagon is divided into N thin trapezoids as shown in Fig. 2-4. The 

mesh spacing is rather desirable, in the aspect of computational efficiency, to have tightly 

spaced meshes only near the interface of the two hexagons since the current at the interface 

is the one to be evaluated with sufficient accuracy. For the i-th trapezoid, a mesh-averaged 

flux (<j)i) and surface-averaged normal neutron currents (Jf, J f , J-1 , Jf ) can be defined. 

Then the neutron balance equation in a energy group is given as:

Jfhi+1 -Jfly +E^X =-(J- -Jf)h (2.2-5)

where J® (with the superscript S being L, R, B, and T ) and (j), are two element vectors, hi,

li, and Vi are the height at the left side, the length of the top (and bottom) side and the

volume of mesh i, respectively, and E is a 2x2 matrix consisting of two group constants as:

-Xv£f2 " ^ _ 1
Zr: # (2.2-6)

OF,, — XvE.
U
u U2

By using the finite difference approximation, the currents at the left and right 

boundaries of a node can be obtained in a conventional way. The neutron balance equation 

given by Eq. (2.2-7) holds for all the interior meshes except the two meshes located at the left
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and the right boundaries of the two-node problem in which no boundary condition is given. 

Thus there are only 2*(N-1) balance equations available per group for the 2N unknowns. 

The additional two equations needed for a unique solution come from the constraints on the 

node average flux.

1 N _ I 2N _

=(|)L , —— t 4>iX =4>R (2.2-9)
VH 1=1 VH 1=N+1

where Vh is the volume of the hexagon.

The linear system consisting of Eq. (2.2-5) for meshes 2 through 2N-1 and Eq. (2.2-9) is 

primarily a block tridiagonal system with nonzero off-diagonal elements mostly at the last 

two rows. The left-hand side of the linear system is shown schematically below:

dd2 a3 a/' 6
u" • "A u • A

lP3 A U : A

u d„ ®n+l A yt A

u A u, A

u *Ai+i dn+i
A ut+1 A

u OL , A U : A

u 2n-l A Ux " A

u ®2n-l d]n-l a2n A LjfP 2n—:[A

u R R R A U(K A

u
Pn+l P2n-l P2" A u^2n A

6P2 ••• Pn Pi 6 ti 4>1 6

(2.2-10)

Note that the basic element in the coefficient matrix is a 2x2 matrix.

It can be solved easily by using the Gauss Elimination technique because of the nearly 

tridiagonal structure. The fill-in problem will occur only at the last column and the last 

row during the Gauss Elimination and thus no significant computational burden will be 

encountered.

To obtain the currents at the external boundaries in which an albedo type of boundary 

condition is given, a set of one-node problems needs to be solved instead of the two-node 

problems. Similarly to the two-node problem, the one-dimensional one-node problem can
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be solved by the fine-mesh finite difference method (EDM).

The accuracy of a transverse-integrated method is limited by the accuracy of the profile 

of transverse current approximated by a low order function as long as the one-dimensional 

problem is solved with sufficient accuracy. In order to obtain better profiles of transverse 

currents, two methods were applied. The first one is a simple vector addition scheme and is 

applied to the interior nodal interface. The other one is a more sophisticated method which 

utilizes a precalculated two-dimensional fine mesh solution for a hexagon located at the 

boundary when determining the current profile at an external surface as a superposition of 

the currents induced from the current sources placed at the other five surfaces. This 

method is used for the boundary surfaces in which the transverse leakage shape varies more 

drastically.
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Figure 2-3 Indices of Currents and Fluxes in Hexagonal Geometry

Figure 2-4 Fine Mesh Structure of a Two Hexagonal Node Problem
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2.2.3 Non-linear Triangle-based Polynomial Expansion Nodal Method

In contrast with the non-linear local fine-mesh method that is based on two-node 

problem, the non-linear triangle-based polynomial expansion nodal (NTPEN) method 

[15,16] is based on one-node problem to find the outgoing partial currents and node average 

flux, given the group constants, keff, incoming partial currents, corner point fluxes. Instead of 

surface-based sweep of two-node problem, one-node problem sweeps the problem domain 

from node-base.

The non-linear triangle-based polynomial expansion nodal (NTPEN) method is a 

variation of the higher order polynomial expansion nodal (HOPEN) method [17] that solves 

the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with 

the HOPEN method that represents the intranodal solution in a three-dimensional domain 

with a truncated polynomial expansion, only two-dimensional intranodal expansion is 

considered in the TPEN method for a triangular domain. The axial dependence of the 

intranodal flux is incorporated separately and it is determined by the nodal expansion 

method (NEM). For the consistency of node geometry of the other methods which are based 

on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 

triangular nodes directly by Gauss elimination scheme.

Fig. 2-5 displays a triangular node and the nodal unknowns defined in the TPEN 

method. The nine unknowns are the volume average flux, first-order x- and y-moments, 

three surface average fluxes and three corner fluxes, respectively. A truncated polynomial 

expansion of the intranodal flux in the two-dimensional domain that is consistent with the 

nine unknowns can be set as:

(ZT(x,y) = (C +a%x + a:"'go ,y+b: X + b> +b: (2.2-11)

Once the polynomial approximation of the intranodal flux distribution is made, the nine 

unknowns are uniquely determined from nine constraints, one nodal balance equation, two 

weighted residual equations, three surface current conditions and three corner point leakage 

conditions. For these equations, the following two-dimensional neutron diffusion equation
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can be constructed:

y dx" dy

X=
(2.2-12)

t vZ"»B"(x,y) + t Z^<(x,y) + Si(x,y),
g'

where S™ (x, y) is axial source distribution which comes from axial leakage.

The nine constraints to determine the nine nodal unknowns can be derived as the 

following form from the definitions of each constraint:

Nodal Balance Equation:

0 Dm %%
gz

eff g'

+ 32:
Dm - -

(e+c+c)
16D;

3 h2
(e+e+e)-

(2.2-13)

Weighted residual equation using w (x, y) = x:

%0 Dm
P80# +z" :cgx

g1

8D; 
+ 3 h2

— — — R Dn
(2.2-14)

Weighted residual equation using w (x, y) = y:

0 Dm
580—!- + E™ °Am Xg

gy t vZ"<T +t Z™ ,c +S;gzy
'"efr g'

-s^(e-e)+^(c,-c,)
(2.2-15)

Korea Atomic Energy Research Institute
30

Rev. 0



MASTER-3.0 Methodology

Net current condition at boundary surfaces:

V5X
3 h

- {Zfl™ + C + C - 24f£ + 20^ +120C } ■ (2.2-16)

Net leakage condition at corner points:

Dm —

(2.2-17)

Fig. 2-6 shows 6 triangular nodes in a hexagonal node. For this hexagonal node, 6 

incoming partial currents and 6 corner point fluxes are specified as the boundary conditions. 

Applying the TPEN to the six triangles yields 31 unknowns, 6 triangle node average fluxes, 6 

x-moments, 6 y-moments, 6 inner surface fluxes, 6 outgoing partial currents and 1 center 

point flux. And Eqs. (2.2-13) through (2.2-17) are used to determine these unknowns. The 

resulting linear system to determine these unknowns is expressed as:

6C, 0 0 -32C,I„ -64C,

§• C„ 0 8/3 QIg -32/3C,

u 0 0 C„ -8C,!, 0

§201,
-60I2 60I3 -481 0

U20I 1201 0 0 -481-y

6 0 -151, 0 0 21,

16/3C, 6(p oSa

16/9C,^,A §S,A

0
21
21
-6i

AiPs A

65

Uc A 

ACTA u jA

66M

Auj A 

'■ °A

where

C0=diag.[a0 a0 a0 a0 a0 a0] + 80Clz C, = diag.[a^ at at at at aj,

(2.2-18)

y = diag.[a2 a2 a2 a2 a2 a2], I = dia.[i i i i i i], I0

oi
u

u

u

u

0i

i
i i 

i i
i i 

i

A

A

A
iA

6 i —i
u i -i A

_u i -i A

i u i -i A"

u i -iA

9-i iA

i2

oi

ui i 

u i i 

u i 

u

0

i 6 i -i

A u-i i A

A j _ u —i i A

i A' Li~u -i i A 

i i A u —i i A

i iA 0 -i i A
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I4=[i i i i i i], tp = row Qcp1 <p2 ••• <p6 g, 9x=row^ 9" ••• 9® q,

9y = row Q9y 9; ••• 9yg/ <P»=rowgp1s 9; ••• q>s6 &
od)p"j0 = rowQj'0 j“ ••• jo^, 9P = u

ao “u
ri

keff
0 -^S21

. 61 0'
,=fr ^ <pm

m=l/... ,6.

1 v 1 v-vE,,------ vE
veff

E
"A'a> - h

_ 1 ®, 0 "

D2B
a2 =

V3h ODj 0 " 
DAQO d2£

'3 ^

The above linear system (2.2-18) can be solved directly by a block Gaussian Elimination 

scheme provided the aforementioned boundary conditions.
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Figure 2-5. Unknowns and Coordinates for the TPEN method

Node 2 Node 3

Node 1
Node 4

Node 6 Node 5

Figure 2-6. Boundary Conditions and Nodal Unknowns on a Hexagonal Node for TPEN
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To use the TPEN method, first of all the axial leakage on hexagonal node must be 

known beforehand. The three-dimensional neutron diffusion equation can be reduced to a two-dimensional 

one by integrating over the axial direction as:

■ D™ + (x, y)+ (x, y)
I dx" dy

Zs t vM(x,y)+t 2" C(x,y)+s:(x,y),
‘-eff g

where

y)=^ y, d%,

s;(x,y) = -^ dz

= _^rfeT(x’y)_J™zB(x,y)) •

(2.2-19)

The superscript'T' and ZB' denote top and bottom surface of node m respectively, and S™

is the axial leakage source which comes from the axial leakage term. Eq. (2.2-19) means that 

the radial distribution of the axial leakage source should be pre-determined to obtain a 

radial solution. In the MASTER code, a NEM solver generates the surface average axial 

currents that are fed into the TPEN solver as the axial leakage source. The radial shape of the 

axial leakage source is considered in the following.

Fig.2-7 shows the node average axial leakages for one center and 6 neighboring 

hexagons. The axial leakage source is defined as:

Sgz (2.2-20)

Using the 7 node average axial leakages shown in Fig. 2-7, the radial dependence of the axial 

leakage within the central hexagon can be approximated employing a two-dimensional 

polynomial consisting of 7 independent terms as:

Korea Atomic Energy Research Institute
34

Rev. 0



MASTER-3.0 Methodology

Sgz (%, y) = dgc + dg,x + dg,y + d^^x' + d^^u' + d^.p" + d^^xup. (2.2-21)

The 7 coefficients of Eq.(2.2-21) can be determined by imposing 7 node average axial leakage 

constraints.

The TEEN solver requires three kinds of axial leakage source parameters on a triangle: 

triangular averaged axial sources, and x- and y- source moments. Fig. 2-8 shows these axial 

leakage source parameters of the 6 triangles of the central hexagon which are defined as:

=^r 'v S,z(x,y)dA ,

§-2=ihX:r‘xS--(x'y)dA - (Z2'22)

=~ ;.yU*.y)dA.

By inserting Eq.(2.2-21) to (2.2-22), one can obtain axial sources which are expressed by 7 

hexagon averaged axial leakage sources of Fig.2-7. For example, the axial sources of the 1st 

triangle of center hexagon are:

where

Q C,1 _
^gz -= w, s;,+w, s +si :+Sgz)+W; S^,

(s4+sgz)+W^4 (Sgz + S^z)+w^

scJ == w , (s' -S" )+w t (s3 -s5 ).
gzy yi V gz gz / y2 V gz gz

83 17 37 43
w " " 540' ^ 3 ~ 540' w4 = 540' " 540'

gz'
(2.2-23)

1 59
^ _ 54' ^ "3240 w.

1620
w.

324
w.

3240

Wyl ='

40
Wy2 =■

1
360
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Figure 2-7. Notations for Axial Sources near Center Hexagon

gzx gzy gzx gzy

Figure 2-8. Triangular Axial Feakage Source Parameters
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3. Transient Neutronics Methodology

The nodal expansion method (NEM) [1,2,3] starts with the multigroup neutron diffusion 

equation in Pi-form.

T% (r, t) + v - Jg (r, t) + (Z (r, t) + * S , (r, t))<pg (r, t)
dt 8>8

= t Z88(r,t)ip8(r.t) + lt t (l-PX.vIVfr-OSYkt) (3-la)
g'<g ^ g' j

+ t %^^C,(r,t) + %^S"(r,t)

Jg(r,t) + Dg (r, t)V(pg (r, t) = 0 (3-lb)

3Cj(r,t)

dt
+ X;Q(r,t) t PiV^fg'(Pg'(r/t)

^ s' i
(3-lc)

where v

%

Jg

E,aS

gg

vE

k

C,

%

= neutron velocity in group g,

= neutron flux in group g,

= neutron current in group g,

= absorption cross section in group g,

= scattering cross section from g' to g,

= V -fission cross section of fissionable isotope j in group g,

= eigenvalue,

= average precursor concentration in precursor group i,

= total yield of delayed neutrons of fissionable isotope j ( = t pj),

Xpg = prompt fission spectrum of fissionable isotope j in group g, 

Xeg = external source spectrum in group g,
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= delayed fission spectrum of precursor group i in group g,

X; = decay constant of precursor group i,

SgXt = external source.

Integrating Eq. (3-1) over a node volume leads to the exact nodal balance equation as 

follows:

1 d<
+1 z-

f g dt u=x,y,z au
(3-2a)

extern

k g

i+mJgus
gu

du
= 0 (3-2b)

acr
dt

■ +W =lt t (3-2c)

where a “ = mesh size in the direction u (=x,y,z) of node m,

jg” = incoming and outgoing currents in group g at the surfaces s (=1, r) of node 

m.

The surface average fluxes are defined by

Vgus '(pg(r,t)dvdw
0 0

(3-3)

where A” = transverse area to u-direction.

By integrating Eq. (3-1) over the transverse leakage directions, one can obtain the 1-
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dimensional equivalent diffusion equations:

l dx|/;;;, a

1

R~~Dr+ (t L+t ^2'u)v,
V „ dt du s du gu aSu gg u / T gu'>£

t +rt t + t xX?k i pg fg' Ug i -ju

-DrL;+%^sextzm

(3-4a)

d rm 1

(3-4b)

where L™ ^.(r.fldvdw.

't a v aw

A
C; (r, t)dvdw:

u 0 0

-c:

To solve the equivalent 1-D diffusion equations, two additional approximations are 

needed. The first term of the left hand side of Eq. (3-4a) is approximated by

dVgu 1 d^

dt 6 dt ¥ gu (3-5)

The time-dependent flux cf) (t) can be expressed as an exponential form

<Mt) = e"'--,T (t) 0-6)

where CO = frequency which can be calculated either during the iterative solution process 

or by using information from the previous time step.
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Then, the derivation of cf)g (t) becomes

dt
= coc|)g(t) + eco(t”to)

dTg(t)

dt
(3-7)

Using the implicit first-order Euler formula we can rearrange Eq. (3-7) as follows:

dt
co^g(t) +

%(t)-e^4)g(tp))

At
(3-8)

where At = t-t0

Inserting Eq. (3-8) into Eq. (3-5) leads to the following expression.

dr<,.
dt At

(coAt + l-
0g(to)

4)g(t)
(3-9)

In the same manner the partially integrated precursor concentrations are approximated by

dGiu = 1 dCi

dt Cj dt ^iu (3-10)

which results in

k
Cl(t) = C1(t„)e^,'->+^t t pi 'vl' MOe^'W

) t„

k *1'

(3-11)

= Ci(t0)e”Xi(t”to) + —t t Pi
) t„

By approximahng Tg (t) with its arithmetic average, the second term of the right-hand side 

of the equation above can be simplified:
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~t t Pj 'vX| ,eco(t”to)eXi(t,_t)T ,(t/)dt/
k

) t„

Ti (<t>,,'(t) + <t>g-<t0)e“"“'“>) 1 -e-””11 Kl“*”1
= ^V‘ 18 2

1 1 _ „-(ra+^i )(t-t0)

(3-12)

Using Eqs. (3-8) and (3-11), Eq. (3-2a) can be rewritten

MA,+tE„+t ^MO

0 ^ g^- g>g u=x,y,z au ^

t Egg(^g'(t) + ^t t %lgVEfg4g'(t)
g<g

tg %'

1 ra+A. p~(Cl,+Xl >At
-tt t t xi.P!vi|,vw-^—

. coAt
+ t xi^,C,(t0)e-1*4,+^— 0K(t0) 

i v At

+ t ----”[2(jgul + jgur ) “ a 4gu ]+ S \
u=x,y,z au

1SU !'->/- + , -j- \ I . oext
gul J gur / “ 4gu

(3-13)

where %Jtg = total fission spectrum ( (l-P^Xpg+t P!Xag )•
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4 Adjoint Flux Solution

The adjoint nodal balance equation [18] starts with the similar form to the forward 

standard diffusion equation with a Pi-approximation.

V • -D(r, E)Vcp* (r, E) + Er (r, E)cp* (r, E)

= 'Es (r, E —» E'jcp* (r, E')dE' (4-1)
E'

+t vE[ (r,E) 'p-X5 (EO^*(r/E'jdE'-t S*(r,E)
i t,' k

Discretizing the energy into groups in the 3-dimensional Cartesian geometry Eq. (4-1) can be 

rewritten as

V -D(r)V(p;(r) + E^(r)tp;(r)

= t Zgg'OWrKt vEj,(r)t -xX'W + S^r)
(4-2)

For simplicity the adjoint current is defined in the following form.

J:(r) = -D fr)V(p:(r) (4-3)

Integrating Eq. (4-2) over volume with the definition of the node average adjoint flux

or' \pg(%,y,z)dV (4A)

leads to the standard adjoint nodal balance equation as follows:
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t &
u=x,y,z au

-m' , ^+m* I I •+m“ , '

I Vggul ]gur J Vgul ' Jgur+ Jg

1
(4-5)

Now the transverse integrated adjoint flux is defined as

C ' '(p/(r)dvdw
a: 0 0

(4-6)

At the surface the equation fulfills the following conditions:

¥ gu s=l,r
= ¥ gus (4-7)

In addition it can be approximated by using the diffusion theory approximation.

v; =2(j- ) (4-8)

In the same manner as the forward equation the 1-dimensional flux is assumed as a quartic 

polynomial.

(4-9)

where tli (u) 's are the same as in Section 2.1.1.

The first three coefficients of Eq. (4-9) can easily be found with the boundary conditions.

(4-10)
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* _ Vgur “Vgul 

“'«■ ™ 2

* . * Vgur +¥gul

a2gu =tg---------^-------

The last two coefficients a I and a 4 can be solved using the weighted residual method

with 1-dimensional equivalent diffusion equations obtained by integrating Eq. (4-5) over the 

transverse direction.

wX-D-Vv
gu (u)+Z:(r)v; (u)-Q: +D-L% (u))du = 0g gu

(4-11)

where w; = ^ (u) (i = 1, 2),

Q"‘=t (£gg. +t ^vl;-)C‘ + s;

L*(u)=-x: „7ir£^<r)dvdw-
Lu 0 0

The adjoint transverse leakage is also approximated by a quadratic polynomial in the 

same fashion as the forward case whose coefficients are found by applying the boundary 

conditions at surfaces. The resulting equation is

q„"=b;„+b;„^(u)+b;„^(u)
Ogu 2gu (4-12)

where b Ogu
xt m*
Lsu (u)du T m*

Lsu

t m* __t m*
Lgur Lgul

r m* 
Lgur + Lm*

gul

2
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The relationship between outgoing and incoming currents and node average fluxes in 

the adjoint equation can be expressed by use of the diffusion equation approximation for the 

adjoint partial currents.

The adjoint nodal balance equation for AFEN method for both rectangular and 

hexagonal geometries is as follows:

v2 4>, -c^ +c2t>2 =o 
v21>2 +c44>, -c34>2 =o

(4-13)

^al +^12 V^fl /k
where c4

In the above equation ci and C4 are different from those of forward calculation. The 

response matrix formulation of this method and the solution procedure are essentially the 

same as those of forward method.
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5. Transverse Leakage Approximation

5.1 Axial Leakage Approximation of NEM/NIM Method

To solve the equivalent 1-D diffusion equation Eq. (2.1-5) using the weighted residual 

method, first of all the transverse leakage DgLgu must be known beforehand. Therefore, 

Lgu is approximated as a quadratic polynomial whose coefficients can be obtained by using 

leakage information from adjacent nodes.

Lgu =b0gu +blgu^(u) + b2gu^2(u) (5-1)

where b0gu = 'Lgu (u)du = Lgu,gu /

b
Lgur Lgul

lgu

b2gu - Lgu
_ L„ +Lgur gul

The first and second coefficients blgu and b2gu are determined by continuity conditions at 

box interfaces m+1 adjacent to m.

L^=L-\1) = L^(0) = L^

dTm_1 dTm (5-2)

Inserting Eq. (5-1) into Eq. (5-2) yields a tridiagonal system for the determination of the 

unknown boundary values Lgur and Lgul. Another useful method to approximate the

interface leakages is to use a linear equation in Eq. (5-2). The boundary values are then 

given by
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Im _ 
Lgul -

Tm =Lgur

D"L; = t 7
=y,z

Dm Lm + Dm_1Lm“1
gu gu Su gu

Dm + Dm_1
gu gu

Dm Lm + Dm+1Lm+1
gu gu gu gu

Dm + Dm+1
gu gu

jlL jgur (jgul
■Jgul.

(5-3a)

(5-3b)

(5-3c)

Eq. (5-3) describes the simplified leakage approximation. The derivation of Eqs. (5-2) and 

(5-3) shows that the leakage approximation is the natural choice in transverse-integrated 

nodal schemes like NEM. Other methods which rely on intranodal flux expansions are 

only practical in two dimensions and must be combined with either the MiB--variant or the 

assumption of separability in z-direction. This can easily be seen by splitting Lgu into two 

parts

L^(u) = L^(u) + L-(ti) M

L«» = "X~ ' '-rytMdvdw
0 0 UV

L«-(u,=-£;"^<r,dvdw

If u = z and (v, w) = (x, y), then the formalism (5-2) or (5-3) can be used to determine the 

parabolic z-dependence of transverse leakage. In the separable case the following relations 

hold

DgWz) = D;B^(z) (5-5)

where DgB^z = ~t — [(jgU, - jgUr)+ Ogui “ jgui)]
9g U=x,y au

If u = x and (v,w) = (y,z), the integration over z can be formally performed to yield
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L^(x) = -— '-^4) (x/a„y/a )dy (5-6)
„dy- s

If the z-integrated flux (f>g(x/ax,y/ay) can be approximated by a non-separable function 

the above integral can be evaluated. A parabolic approximation leads to

4>g(x,y) = t c*A(*)5j(y)
i/j

D ^
= +Ci2g^i(x) + c^^(x))

ay

with

Dgbigx = 3 —— (c^g(0,0)-<\>g(1,0) + <\>s(0,1)-<\>s(l,l)+2(\|/gxr -xj/g^i))
ay

Dgb2gx =3 ——(<>g (0,0) + (|)g (1,0) + cf)g (0,1) +(|)g (l,l) +4(|)g
ay

“ 2(Vgxr + Vgxl ) - 2(Vgyr + Vgyl ) )

where the time-dependence of c|) has been suppressed.

Replacing x by y the corresponding formulae for the y-direction are obtained. The 

contribution of the z-direction

Lzgx (x) = - ' '-^g (r)dydz (5-8)

0 0 dz

is again given by Eqs. (5-2) and (5-3) or under the assumption of separability of the flux in z- 

direction by

DgL^(x) (5-9)
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5.2 Axial Leakage Approximation of TPEN

The three-dimensional neutron diffusion equation can be reduced to a two-dimensional one by 

integrating over the axial direction as:

■ D“ + K •€ (x, y)+KJT (x, y)

I dr

t 2%,#Xx,y)+S:(x,y),
“■eff g

where

(%' y)=^ y, ,

s;(x,y) = -^ -D^^^(x,y,z) dz

= (ay)-J™zb(xa)) •

(5.2-1)

The superscript‘T and 'B' denote top and bottom surface of node m respectively, and S™

is the axial leakage source which comes from the axial leakage term. Eq. (5.2-1) means that 

the radial distribution of the axial leakage source should be pre-determined to obtain a 

radial solution. In the MASTER-3.0 code, a NEM solver generates the surface average axial 

currents that are fed into the TPEN solver as the axial leakage source. The radial shape of the 

axial leakage source is considered in the following.

Fig.5-1 shows the node average axial leakages for one center and 6 neighboring hexagons. 

The axial leakage source is defined as:

Sgz (5.2-2)

Using the 7 node average axial leakages shown in Fig. 5-1, the radial dependence of the axial 

leakage within the central hexagon can be approximated employing a two-dimensional
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polynomial consisting of 7 independent terms as:

Sgz (%, y) = dgc + dg,x + dg,y + d^x' + d^u' + d^.p" + d^xup. (5.2-3)

The 7 coefficients of Eq. (5.2-3) can be determined by imposing 7 node average axial leakage 

constraints.

The TEEN solver requires three kinds of axial leakage source parameters on a triangle: 

triangular averaged axial sources, and x- and y- source moments. Fig. 5-2 shows these axial 

leakage source parameters of the 6 triangles of the central hexagon which are defined as:

%.S4z(x,y)dA ,

§‘2=ihX:r‘ XS--(X'y)dA ’ (5.2-4)

;.yS,T,y)dA

By inserting Eq. (5.2-3) to (5.2-4), one can obtain axial sources which are expressed by 7 

hexagon averaged axial leakage sources of Fig.5.1. For example, the axial sources of the 1st 

triangle of center hexagon are:

=w, s;„+w,x+w3 (s;z+s;J+w4 fe+s’J+w, sy 

ki = w SI + w . s + w.. (s-+s‘)+wl4 Is; + s;)+ w . s|.,

S^="„(s;-4-S;z)+w;2(s3,z-sU-

where

Wj =1, w2 =
83

540
w3 =

17
540

w4 =
37 
540J

w5 = ■
43

540

1 59
^ " 54' ^ "3240 w.

1620
w.

324
w.

(3.4-5)

3240
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wyi wy2
1

360 '

Figure 5-1 Notations for Axial Sources near Center Hexagon

gzx gzy gzx gzy

Figure 5-2 Triangular Axial Feakage Source Parameters
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6. Assembly Homogenization

6.1 Simplified Equivalence Theory

Since the nodal methods treat large nodes as homogenized regions, it is needed to 

determine the equivalent diffusion parameters. In the lattice codes, flux and volume 

weighted few group cross sections are determined with zero current boundary conditions. 

However, it is known that the use of these cross sections does not allow preserving any of 

conservation quantities such as reaction rates, currents and fluxes of the heterogeneous cell 

calculations, which leads to large errors. Consequently, additional degrees of freedom 

must be introduced such that all conservation conditions can be met. The "equivalence 

theory" [19,20,21] has been turned out to be very effective to meet the purpose.

The equivalence theory starts with the continuity condition of the corresponding surface 

average heterogeneous fluxes at the interface of two adjacent nodes k and IT:

(6.1-1)

Since there is no longer physical reason to assume that the homogenized flux should be 

continuous at the interfaces between two different homogenized assemblies, Eq. (6.1-1) can 

be rewritten using the discontinuity factor f .

(6.1-2)

where the discontinuity factor is defined as the ratios of the heterogeneous flux to the 

corresponding homogenized surface flux.

If the multigroup reference solution for the heterogeneous node is known, the two 

equivalence parameters, Dgu and f can be determined by solving the following 

equivalent equation system for the homogenized flux:
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-Dg ^2 VgW't (Eg'g+^vEfg')^g'(u) - _DgLg(u) (6-1-3)

where Lg(u) = transverse leakage for group g. The quantities such as the eigenvalue, flux

weighted cross sections and surface average currents on the two adjacent faces can be 

obtained from heterogeneous multigroup solution, and the transverse leakage can be 

approximated from the heterogeneous pointwise leakage distribution.

According to the conservation principles it is required that the solution of the equivalent 

equation system for the inhomogeneous boundary value problem must reproduce the 

surface average heterogeneous fluxes at both boundaries. To meet this requirement the 

resulting homogeneous equivalent solution is adjusted by introducing the discontinuity 

factor as defined by Eq. (6.1-2)

MASTER-3.0 uses the "simplified equivalence theory" (SET) for assembly 

homogenization by default. The simplifying assumption is made so that the interaction of 

assemblies can be described in terms of only a single pair of direction-independent Dg and

Dg*=Dgy =Dgz=Dg

f =f =f =f
g% gy gz g

(6.W)

One of the advantages of this theory is that the existing nodal diffusion equation can be used 

without any modification. The equivalent cross sections and diffusion coefficient are 

redefined in SET.

ySET
^g (6.1-5)

The solution of the conventional diffusion theory using these refined cross sections and
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diffusion coefficients becomes the modified "SET-flux" f d (r) which is continuous at the 

assemblies boundaries.

The SET homogenization scheme is very convenient to implement and achieves good 

accuracy in calculating average assembly powers and reconstructed local pin powers for 

unrodded and rodded cores. However, it is limited to the analysis of the interior 

symmetric fuel assemblies because it is not able to consider the direction dependency of 

equivalent parameters by nature.

6.2 Assembly Discontinuity Factor

The SET has very simple to consider with good accuracy whereas it is valid only when a 

fuel assembly is symmetric. In case of asymmetric fuel assemblies, however, the same 

heterogeneity factors cannot be applied to all the sides. Therefore, we need to provide 

sidewise discontinuity factors (DFs, or fgus) [21] different from side to side. In the actual

calculation, we do not know the true heterogeneous flux which must be known to determine 

the value of DFs. This problem is solved by referring to the Assembly discontinuity factors 

(ADFs) coming from isolated assembly spectrum calculations with reflective boundary 

conditions. Thus, DFs are approximated by ADFs directly computed from single assembly 

calculations without knowing the heterogeneous reactor solution.

MASTER-3.0 can use DFs for asymmetric fuel assemblies. The neuronics solution with 

DFs can be easily obtained. For example, it is only necessary to divide the surface-averaged 

fluxes of the partial current equations by their corresponding DFs. The aigu (i = 1, ..,4) of 

NEM flux expansion coefficients are given as
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1
a‘«"™5a7

gur

I gur 1gul ^ I igur

+ Vgu,

gul

l3gu

4gu

( jgur - jgur ) + ( jgul ~ jgul ) + J_ (j V gur Vgu,

12D„
gu Lr Lgul

(jgur “jgur) - ( jgul - jgul ) 9, 1 Wgur Vgul
12D gu

-#g-- f

y
+

gul

where Dgu=D;/au-

(6.2-1)

The partial current equations for node m be then represented as

j^ = (^ + a^) + -c^,a

i+m — rm ZAm -L a m \ rm i+m _l r m i_m _i_ rm a 
Jgur LlgurVVg ^d4 /^L3gurJgul ^L2gurJgur +L4gurd

3gu

3gu

(6.2-2)

where

0 4D 0 4D '«
clm., = 6D„„ §1 +-----— o / F „ , Cl„. =6D„„ §1 +-----— o / F-lgul sua f

I gur
gu ’ lgur

fgu, gu

6 u i i 48
c_, = ul + 8D d —------- -------------- — A / F„-2gul

-2gu

-3gul

gu a f f f f
| gur gul gur gul

0 U 1 1 o 48 D
= uL-SD,,, a------------- gu

X Su cl f f f f
y I gur gul gur ^ gul

8D

A / F.

!E-/f c£ gu ’ 3gur
gu

gur

0 12 D
c4gui =6Dgu|1 + —A-

| 1gur

f /FBU
rgul

„u 0 12D„U

| rgul

f,. = i+8D8„|UT- + 2_:+1E»i

I gur gul gur A gul
(6.2-3)

For the AFEN method and the TPEN method, we can also obtain the relationship between 

the homogeneous and heterogeneous partial currents. The homogeneous and 

heterogeneous surface fluxes are related as
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¥gUS
¥

het

gus

gus

(6.2-4)

Also recall that the homogeneous and heterogeneous net currents at a node interface are 

identical and each surface flux is expressed by its partial currents:

J gus J gus

=2 (jL + j;

•het,+ -het
Jgus - J

gus Jgus

het 

gus

•het - ■
(6.2-5)

Then, we can derive the relationship between the homogeneous and heterogeneous partial

currents:

jgul

•+m
Jgul

OU l . t u i . t
+ A/2,

ET^uI t I tgul t A

du 1 . t u 1 "
+ A/2.

i Igui . ALgul

(6.2-6)
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6.3 Cross Section Representation

The two-group assembly homogenized cross sections are generated from single fuel 

assembly calculations based on the multi-group neutron transport theory. To make use of 

these cross sections in a dimensional code, they need to be functionalized with some 

variation parameters. In MASTER-3.0, microscopic cross sections at a certain burnup are 

determined by the following formula:

o(ppm, Tf,Tm,pm) = o(ppm0, Tf0 ,Tm0,pm0)

(6.3-1)

o(ppm0, Tffl, Tm0, pm0) = microscopic cross section at the reference state,where

ppm0 = boron concentration at the reference conditions, 

Tffl = fuel temperature at the reference conditions,

Tm0 = moderator temperature at the reference conditions, 

pm0 = moderator density at the reference conditions.

The macroscopic group constants used in the flux calculation are obtained by combining 

the number densities, microscopic cross sections and feedback terms. The cross sections are 

assumed to vary linearly with boron concentration, moderator temperature, moderator 

density, the square root of the fuel temperature. In case of the moderator temperature 

variation, however, more than two variation points can be established to cover a wide range 

of moderator temperature from room temperature to the maximum temperature in a core 

because it is known that the change of microscopic cross sections with moderator 

temperature variations are not linear.
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7. Reflector Representation

7.1 Equivalent Reflector Cross Sections

MASTER-3.0 uses the equivalent homogenized reflector cross sections [22,23,24,25] 

based on the simplified equivalence theory (SET). The homogenized reflector cross 

sections are generated to preserve the response matrix of the heterogeneous geometry at the 

interface of core and reflector.

The reflector homogenization problem can be simplified to the 1-dimensional 2-group 

spectral geometry as shown in Fig. 7-1. Since the transverse leakages are zero in the 1- 

dimensional geometry, the 2-group diffusion equation at the interface of core and reflector 

can be written as

(7.1-1)

where f = heterogeneity factor of group g using the boundary condition at x = x b,

(7.1-2)

The analytic solution of Eq. (7.1-1) can easily be achieved as follows:

(^(x) = A2(sinhw2x - cothw2xb coshwqx) 
(|)2(x) = K A2(sinhw2x - cothw2xb coshwqx) (7.1-3)

+ A2(sinhw2x - cothw2xb coshw2x)
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where w1
J v' het , het 
^al ' ^12

Drhet w,
^^(^V4)/(D^/h)

w2 -w2

The response matrix (R ,) between fluxes and net currents can be defined at two 

different heterogeneous regions, fuel and shroud.

f (x) = t R^jjMx) (7.1-4)
g

where the superscript n (= 1,2) denotes the two different calculations performed with 

different fuel characteristics such as an enrichment variation.

Using the net current definition at the interface

L(0) =
D,
f dx

c=0

(7.1-5)

and Eq. (7.1-4) we can get the response matrix coefficients which are composed of 4 

unknowns, fgand Dg (g = 1,2). In order to derive a homogenized representation for the

heterogeneous reflector, the equivalent flux solutions has the same reflector response matrix 

coefficients as those in the heterogeneous reflector geometry.

RK'=R“ <7'l-6>

If i1 is set to be unity due to no source term, we can compute f2 and Dg (g=l,2) and 

determine the equivalent cross section for the reflector.

Diq = D,, De2q=D2/f2 (7.1-7)
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shroud

fuel reflector

x=0 x=xb

Figure 7-1 One-Dimensional Spectral Geometry of Reflector

7.2 Radial Reflector Constants

The equivalent reflector cross sections are not dependent on coolant temperature and 

density, but on boron concentration dissolved and shroud thickness. It is known that the 

reflector thickness has little influence on the equivalent cross sections if it is large enough. 

To avoid the frequent preparation of the equivalent reflector cross sections, the correlation 

is established through the variation calculations with the boron concentration dissolved in 

the reflector and the steel shroud thickness

f (x) — a0 + axx + a2x (7.2-1)

where x = steel shroud thickness (cm).

However, this correlation is not valid for the corner reflector region faced with two fuel 

assemblies. Even though the 2-dimensional spectral geometry is investigated in the same 

manner as the 1-dimensional case, only the removal cross sections is simply corrected to 

account for the change of steel-to-water ratio
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c =
^ FA ts

FA

(7.2-2)

where ( FA = side length of a fuel assembly, 

ts = shroud thickness.

According to the analyses, the fast absorption, thermal transport and absorption cross 

section have a linear relationship to the boron concentration, whereas the fast transport and 

scattering cross sections show no dependence on it. Thus the constant boron derivative is 

used to describe the variation of reflector cross sections.

7.3 Axial reflector Cross Sections

The generation of the axial reflector cross sections is basically the same as that of the 

radial reflector except that they are expressed with microscopic cross sections. If only the 

quantities and properties of structure materials within the top and bottom axial reflector 

regions are known, one can easily calculate the microscopic cross sections representing the 

axial reflectors using CASMO-3 [26,27] or HELIOS [28] in the similar manner to an edge- 

type of radial reflector. As a result, the axial reflector cross sections are composed of Had, 

B-10 and a structure material. The difference of cross sections between top and bottom due 

to the contents of structure materials can be neglected and has little effect on the axial and 

radial quantities as well as the core average ones. The volume fraction of the water and the 

dissolved boron concentration are the same as in the interior core region.
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8. Corner flux Evaluation

8.1 Method of Successive Smoothing

8.1.1 Cartesian Geometry

In order to construct flux corner values, a rough estimate for the corner flux is 

made by linear extrapolation from each of the nodes surrounding the corner concerned. 

These estimates are then averaged with weighting factors to be chosen appropriately. 

Using the Method of Successive Smoothing (MSS) method [8] in the Cartesian geometry 

as show in Fig. 8-1, (|)00 is determined as:

4

<>00 = t Wi4>00 (8.1-1)
i = l

where ^Kl =\|fA +X|/„ -(j)1 , ^ =X|/B +\|fc -(|)2 ,

^00=Vc+Vd-^3z <>00 =Vd+Va-^4z

\|/x = surface average flux at face X,

(|)n = node average flux in node n.

Another way to construct the corner fluxes is as follows:

Ko = VaVb z <>oo =VbVc /^2 (8.1-2)

<>oo =¥c¥d /^3 z tyto =¥d¥a

In practice, an arithmetic weighting with w; = 0.25 in the fast group and weighting 

with diffusion constants w; = Dyt D; in the thermal group have proved to be the best

choice for quadratic geometry. [29]
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Figure 8-1 Four Adjacent Nodes in Cartesian Geometry

8.1.2 Hexagonal Geometry

The calculation of flux values at the vertices of the hexagonal fuel assemblies [30] is 

similar to that of rectangular fuel assemblies. The corner flux of a node, (|)00, in the 

Hexagonal geometry is derived by appropriate linear combinations of surface fluxes and 

node average flux

<l>00=t Wi^00 (8.1-3)
i=i

\|/x = surface average flux at face X,

(|)n = node average flux in node n, 

with W; = D;/t D; .
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Figure 8-2 Three Adjacent Nodes in Hexagonal Geometry

8.2 Corner-Point Balance Method

8.2.1 Cartesian Geometry

The vertex flux of a node must be known ahead of the determination of cross terms of 

the flux expansion. MSS having been employed in MASTER-3.0 approximates the node 

vertex flux by a linear extrapolation of the surface-averaged and node-averaged fluxes. It 

then determines the common vertex flux of four adjacent nodes by taking the arithmetic 

average of the vertex fluxes. This approach is not accurate enough in the cases where 

neutron flux varies very rapidly around the vertex because the arithmetically averaged value 

is quite different from the vertex values resulting from the adjacent nodes by MSS. This 

deficiency can be overcome by using the multi-dimensional flux expansion and then 

evaluating the vertex flux based on the neutron balance within a small box around the vertex 

which is shared by four adjacent nodes [7], The neutron balance in the small box is fairly 

equivalent to the leakage balance at its surfaces if it is quite small without any singular 

source. The leakage balance is expressed as:

Lg + L2g + L3g + L g =0 (8.2-1)
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where L1 = the net neutron leakage out of the node i.

The multi-dimensional flux expansion can be expressed by the spatially nonseparable 

quartic polynomial or more complicated expansion used in AFEN. In this study, the 

following quartic polynomial is used for all the solution options: NEM, NIM and AFEN.

4>g(%, y)-1 cgij^i(—
1J=0 ax av

(8.2-2)

where %(x) is the same function as in Eq. (2.1-4). The coefficients for both i and j > 0 are 

referred to as the cross terms which can be approximated using neutron fluxes at the four 

vertices of the node. Once all expansion coefficients of the above equation are known, the 

transverse leakage is obtained in a straightforward manner. Therefore, the net neutron 

leakage out of the node i in a small box can finally be written as:

L'« ="4 + -2D"
ax ay

-6d;[^+^
ax ay

+ 2 d;[3% + 2+ 2 d;[2^ + 3^]^,
av a„ av a.

(8.2-3)

The substitution of Eq. (8.2-3) into Eq. (8.2-1) yields exact set of equations for the vertex 

fluxes in terms of node-averaged and surface-averaged fluxes, diffusion coefficients and 

node sizes of four adjacent nodes. The resulting vertex fluxes are used to solve the 

transverse leakage profile more accurately for NIM and NEM and to complete the nodal 

coupling equation at corner points for AFEN.
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8.2.2 Hexagonal Geometry

The multi-dimensional flux expansion can be expressed by the spatially nonseparable 

quartic polynomial or more complicated expansion used in AFEN. In MASTER-3.0, the 

following quartic polynomial is used for hexagonal geometry [13]. The basis polynomials 

are chosen such that they are even or odd in the directions and are linearly independent to 

their 120 degree symmetric functions.

4>(%, y) = c,, + A;,(x>E (x)+ (y)+ (y)

+ A^5,o(p)+B^,o(p)+A^5o,(q)+B::^(q) 

+ Agi5io (u)+ B g! 5 20 (u)+ Ag:5 01 (v)+ B g2 ^ 02 (v)

(8.2-4)

where 5,g(x)=x^+x, 5^(x)=x^+x\ 5g,(x)=x^-x, Wx)=x^-x\

The thirteen coefficients are easily determined by one node-average flux, six surface 

average fluxes and six corner-point fluxes. It is based on the neutron leakage balance 

within a very small triangle around the corner point without any singular source.

(8.2-5)

where Lng = net neutron leakage out of the node n. For example, the corner-point flux at 

the top-most location perpendicular to x-direction is

(8.2-6)

where cf>d s = corner-point flux at the top(bottom)-most location (s = r (1)) perpendicular to

d-direction,

(f>d s = surface flux in d-direction at surface s,

cf) = node average flux,
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w1 = coupling coefficient.
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9. Reconstruction of Pin Information

The interpolation techniques for the reconstruction of local pin fluxes and power from a 

coarse mesh nodal solution are described in this section. Knowledge of detailed pin 

information is essential for accurate calculations of peaking factors and detector reaction 

rates for tracking of individual pins and for Departure from Nucleate Boiling (DNB) 

evaluation.

The reconstruction is based on the following procedure [31] : First, the global node 

average flux distribution is found. Second, the local homogeneous flux shape within each 

node is computed by solving the diffusion equation assuming homogeneous material 

properties. The boundary conditions to the local problem are provided by the global 

solution. Finally, the node heterogeneity is then accounted for by modulating the local 

homogeneous flux with form functions describing the fine structure of the assembly. This 

procedure is directly applied to the local heterogeneous flux and power distribution. The 

heterogeneous pin burnup is accumulated using integration of the calculated heterogeneous 

pin power over time.

9.1 Local Homogeneous Information

9.1.1 Cartesian Geometry

Most of those methods are accurate enough in cases where the flux gradients are not 

steep, but they lead to intolerable errors in case of the rodded fuel assemblies and especially 

the loading pattern of Mixed Oxide (MOX) fuel assemblies showing very large thermal flux 

gradients at the node edges.

The analytic solution method (AS) by use of corner flux evaluation with MSS [29] or 

CPB [7] is based on analytical functions which fulfill the diffusion equation in each interior 

point of a node. They are referred as MSS-AS and CPB-AS, respectively. Its interpolation
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function requires 8 coefficients per energy group which are constructed from the 4 corner 

flux values and the 4 node surface average flux values. The local interpolation is in 

principle a 3-dimensional problem. However, the expenditure of solving the 3-dimensional 

problem can be reduced by assuming that the radial (x,y)-direction and the axial(z)-direction 

are separable. Then we can reduce a 3-dimensional problem to a 2-dimensional one.

The stationary diffusion equation with the assumption of constant material properties 

within a node is

A(|y -c^, +c2(|)2 = 0 

#2 +c44>, -c34>2 =0
(9.1-1)

Z.i+Z,2-vZa/k + m,)t K-]%)/%
where c4

vXf2 /k
D, Di

C3 _

Z.2+(l/»,)t (j£-)£)A>,
s=l.r

Di C4 _
12

D.

The (|)g is the node average flux and j°“* and H are the outgoing and incoming

partial currents in z-direction at the left (s=l) and right (s=r) node boundaries, respectively. 

The nodal coarse mesh methods provide the nodal flux functions for each calculated node.

r(x) =
1
a

2

4(%,y)dy
2

s(y)
l
a

2

'4>(x,y)dx

2

(9.1-2)

Using the information derived from r(x) and s(y), we can construct an interpolation
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function cf)(xr y) within a node.

Using the functions

4>i =r|i +«r|2 

^2 =Mi +r|2

where P = c4
c3

2 '

Eq. (9.1-1) can be simplified as

Ar|, =
Ar)2 = k22t)2

where K1 = —
c, +C, "3\2y +c2c4 , k/=U±£. + J(£^+c!C.

The basic functions of Eq. (9.1-4) are given by

w4 = sinhKg^ 

w2 = COShKg^;
for

or

w4 = sinKg^j 

W2 = COSKg^j
for

where ^ = xcosoq -t-ysinoC;, i = 1, 2,

(9.1-3)

(9.W)

(9.1-5a)

(9.1-5b)
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The functions T| can be approximated in the following form

hgn=t t cikwk(ai’ Kg/X,y) (9.1-6)
i=l k=l

The coefficients of Eq. (9.1-6) are determined by boundary conditions. For a Cartesian 

geometry cy is recommended by the symmetry of the node.

a, =0°

oy =ai_1 +45°, i = 2,3,4

Since Eq. (9.1-6) does not reproduce exactly the average nodal flux value resulting from the 

nodal calculation such as NEM, NIM and ANM, the equation is transformed with a constant 

so that the average nodal flux value can be preserved. This is called as the improved 

analytic solution method (IAS) [32].

4 2

hg =Cog +t t dikwk(ai/Kg/x/y) (9.1-7)
i=l k=l

Using the addition theorem of sine, cosine and hyperbolic functions Eq. (9.1-7) can be 

rewritten as

= c„g+CigSNKgx + c^CSKgx+c^SNKgy + c^CSKgy
"2g 3g" "4g
rV2 V2 ,V2

+ c5gSN—-k xSN—-k y + c6 SN—-k xCS—-k y (9.1-8)

,V2 V2 V2 V2
+ c7 CS—-k x SN—-k y + c8rCS—k x CS—-k y

where SN and CS are trigonometric functions for Ky < 0 and they are hyperbolic functions 

for > 0 .
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The nine unknown expansion coefficients per energy group cig are determined by

using the boundary conditions such as node average, four edge average and four corner 

values which in turn can be calculated by means of the corresponding fluxes.

In order to construct flux corner values, a rough estimate for the corner flux is 

made by either linear extrapolation (MSS) or CPB method from each of the nodes 

surrounding the corner concerned. With the notation of the corner fluxes (i,j = 0,1)

and the edge fluxes X|/us (u = x,y; s = r,l) as defined in Fig. 9-1 the coefficients in Eq. (9.1-8) 

for the case Kg > 0 becomes

Cog =n«-(C2g+C4g)2g 4g-

sinhA
A

sinh B 
B2

sinhB
B

(Boo +Boi -Bio -Bn) + 2coshB(T|xr -r|xl)
-ig 4sinhA(coshB-2ul’?)

sinhB . sinhB. . , -
Qi -(coshB + —^-)Q] +4coshB^

y1
4(coshA-^)(-coshB + 2,ytl) 

A B
4(coshA-^)

sinhB
B

(Boo +Bio -Boi -Bn) + 2coshB(T|yr -r|yl)
'3g 4sinhA(coshB-21Ml)

sinhB . sinhB. . , -
--------Q, - (coshB + —)Q, + 4coshBn8 ^ ^ ^

4(coshA-^)(-coshB + 2ElT)
A B

4(coshA-^)
(9.1-9)

Boo +Bn “Bio “Boi
'5g 4sinh B

^6g -
Bn ~Boo +Bio -Boi ~2(Bxr ~Bxi)

4sinhB(coshB-SU^lB)
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hn +rloi — Moo rlio -2(r|yr -r|vl)lyl .
'7g 4sinhB(coshB-^^)

Qi -2Q, + 4r|g 
4(coshB-^)!

, A a _ 4l a
where A = -k , B =------- k ,

2 s 2 2s

Ql =Bll +Boi +B00 +BlOz Q2 =Bxr +Bxl +Byr + B yl •lyl-

The results for the case k’ > 0 are obtained from the above equations by replacing sinh 

and cosh by sin and cos, respectively.

y'Ay

"VS/ ) Vxl

VyrT|yr

0
\A/2

t

j

J T|xl
T|xA

VylTlyl

)

^10 Rio1 Aio %/2

Figure 9-1 Corner and Edge Fluxes in Cartesian Geometry
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9.1.2 Hexagonal Geometry

For the intra-nodal flux and power reconstruction for hexagonal fuel assemblies are basically 

the same as that of rectangular fuel assemblies. This method is AFEN method, which is 

equivalent to IAS [32] and uses MSS or CPB method for the corner flux evaluation. Since 

the corner fluxes are resulted from the AFEN nodal solution, the intra-nodal flux and power 

reconstruction is consistent to AFEN nodal solution as described in section 2.1.3.

Korea Atomic Energy Research Institute
74

Rev. 0



MASTER-3.0 Methodology

9.2 Local Heterogeneous Information

The local heterogeneous flux shapes are not directly provided from the nodal solution, 

but obtained by the modulation method. The fine-mesh form functions for fuel assemblies 

are precalculated with zero net current boundary conditions.

f‘"“ (X, y) = (x, y)/<™ (x, y) (9.2-1)

Therefore, an approximation of the reconstructed flux distribution of the assembly in the 

global problem is obtained by the product of a global homogenized flux distribution and a 

local heterogeneous form function:

♦r (X, y) = f *■"“ (x, y)f (x, y) (9.2-2)

The form function accounts for the assembly heterogeneity caused by water holes, 

burnable absorbers, enrichment variations, etc.. The power form functions are 

precomputed from single assembly calculations in the same manner as the flux form 

functions.

P"(x,y)

P'-(x,y)

where p"""(x,y) = t xZ^(x,y)^-(x,y).
g

(9.2-3)

On the contrary, however, the heterogeneous burnup distributions are calculated directly 

using the heterogeneous power distribution obtained.

Since cross sections and formfunctions are generated with idealized boundary 

conditions such as a zero net current boundary condition, the influence of neighboring 

assemblies is not considered. Even though the spectral influence between assemblies is not

Korea Atomic Energy Research Institute
75

Rev. 0



MASTER-3.0 Methodology

so large in the core composing of UO2 fuel only, it becomes serious in the cores including 

MOX fuels or the cores having loading patterns with large heterogeneity among assemblies. 

Therefore, the method accounting for the spectral history effect [33] should be implemented 

to enhance the accuracy of local information for those cores when reconstructing.

9.3 Pin Burnup Calculation

The local heterogeneous burnup within an assembly is not estimated by the modulation 

of the burnup form function, but is accumulated using the local heterogeneous power. 

The increase of local heterogeneous burnup at the position (x,y) is expressed as

AB^(x,y)
— het
P T'y)ZB

(9.3-1)

where P (x,y) = local heterogeneous power averaged over At at (x,y),

P = node average power over At,

AB = increase of node average burnup corresponding to P (= cPPth At),

Pth = thermal power (MWt),

At = depletion time interval (sec),

c = burnup conversion factor (MWD/kgU) (= A0 / £ (M ^ )„„„.,, ),

A0 = Avogadro's number,

M; = atomic weight of heavy nuclide i,

N; = number density of heavy nuclide i.

In order to get more accurate power during depletion, the pinwise power from the previous 

depletion step is averaged with that from the current one.
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P^(x,y) Pn"(x,y)+pr(x,y)het /

(9.3-2)

where the subscripts n-1 and n denote previous and current depletion steps, respectively.
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10. Depletion

MASTER-3.0 has the microscopic depletion module consistent to CASMO-3 [26,27]. It 

contains depletion models for fuel, burnable poison, xenon, and samarium. The inventories 

of fuel and fission product nuclides can be obtained by solving their depletion chain 

equations.

The depletion equations are solved using the semi weighted predictor-corrector method 

(SWPC) or fully weighted predictor-corrector method (FWPC). FWPC consists of two steps 

of calculation stages: the predictor stage and the corrector stage. Both stages include a 

steady-state flux calculation and a depletion calculation. It should be noted that because o 

and (|) are varying during depletion, the average O and (f) over a time step must be 

accurately calculated.

As shown in Fig. 10-1, the predictor stage nuclide number density Nn corresponding 

to the burnup point Bn at time tn are depleted to yield the predicted number density 

N„+1 with the microscopic cross section on and the flux (|)n assumed to be constant 

during At. At time tn+1, the predicted nuclide number density N[’+l leads to the 

determination of the predicted microscopic cross section c£+1 and the flux (j) [’+,. Since 

the constant cross section and flux during a given time interval is a rough assumption, the 

corrector flux (f>^ and cross section o'n for depletion are evaluated by weighting (|)n and 

Gn at time tn, and (|)^+l and o[’+l at a predictor stage.

< = C4n+(1-C0)<+1 (10-1)

< =coon+(l-co)oP+1

where the subscripts p, c = predictor, corrector,

(0 = weighting factor.
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Consequently the nuclide number density N n +1 and burnup Bn+1 for the next time point 

tn+1 is determined with the present nuclide number densities and corrector microscopic 

cross sections together with corrector fluxes. The fixed weighting factor is used for most 

nuclides. However, for burnable poisons whose absorption cross sections vary 

significantly with time, the depletion is performed with less than 5-day time step size 

instead of using weighting factor.

SWPC is basically the same as FWPC except that the corrected fluxes (j)'n are not 

estimated since flux variation during a depletion period are relatively small. MASTER-3.0 

uses the SWPC by default to reduce the computing time with maintaining computation 

accuracy or the FWPC by option.

Figure 10-1 Predictor-Corrector Scheme
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10.1 Heavy Nuclide Depletion

The heavy nuclide chain is largely composed of the U-235 chain and the U-238 chain 

[34]. The U-235 chain is coupled to the U-238 chain through Np-237 and Pu-238. The 

heavy nuclide chain, consisting of 11 nuclides as shown in Fig. 10-2.

Time dependent nuclide number densities are determined by the first order differential 

equation,

^ = P,„, Nm - R, N, (10.1-1)
dt

where P; = production rate of nuclide i ( Xi_1 + £ yGcgf(|)g ),
i' g

Y ii' = yield fraction of nuclide i from nuclide T,

Ri = removal rate of nuclide i ( X, + £ Gagi 6),
g

Ni = number density of nuclide i,

A,; = decay constant of nuclide i,

Ocgi = microscopic capture cross section of nuclide i in group g, 

Gagi = microscopic absorption cross section of nuclide i in group g.

The decay constants and fission product yields of nuclides are listed in Tables 10-1 and 10-2, 

respectively.

The analytic solution of the above equation can be expressed as

Ni = £ aljexp(-Ri At)
j=i

(10.1-2)
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where
■^i-l ai-lj

R.-R,
when j < i,

i-i

a ;; = N ; At ~ ^ &
i=i

i) •

The decay constant and fission product yields of nuclides are listed in Tables 10-1 and 10-2, 

respectively.
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Table 10-1 Decay Constants of Nuclides

Nuclide Decay
Constant

Nuclide Decay
Constant

Nuclide Decay
Constant

Pa-233 .2975E-6 Cm-242 .4922E-7 Xe-135 .2100E-4

Np-239 .3441E-5 Cm-244 .1213E-8 Pm-149 .3626E-5

Pu-241 .1536E-8 1-135 .2924E-4

Table 10-2 Fission Product Yields of Nuclides

Nuclide Pm-149 Sm-149 1-135 Xe-135 FP*

Th-232 .00882 .0 .05314 .00031 1.0

Pa-233 .00882 .0 .05314 .00031 1.0

U-233 .00777 .0 .04913 .01283 1.0

U-234 .01067 .0 .06298 .00242 1.0

U-235 .01067 .0 .06298 .00242 1.0

U-236 .01067 .0 .06298 .00242 1.0

Np-237 .01067 .0 .06298 .00242 1.0

U-238 .01608 .0 .06827 .00028 1.0

Pu-239 .01239 .0 .06447 .01152 1.0

Pu-240 .01239 .0 .06447 .01152 1.0

Pu-241 .01524 .0 .07068 .00231 1.0

Pu-242 .01524 .0 .07068 .00231 1.0

FP : Fission Product
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a : 89% (CASMO-3), 71% (HELIOS) b : 11% (CASMO-3), 14% (HELIOS) c : 15% (HELIOS)

Figure 10-2. Chain Reaction of Heavy Nuclides
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10.2 Burnable Absorber Depletion

Basically, the burnable absorber depletion equation is the same as that of the heavy 

nuclide chain. The burnable absorber such as a gadolinium having rapid change of their 

number densities during depletion would cause large error for large time step unless the 

thermal absorption cross section within a given depletion interval is well estimated. 

Therefore, the effective microscopic cross section versus number density table is more useful 

than macroscopic cross section versus burnup. The detailed Gadolinium isotopes chains 

are as follows:

^ = -Nia> iN^;^ (10.2-1)
at

where N1 = number density of nuclide Gd' (i = 154 ~ 158),

a‘a = microscopic absorption cross section of nuclide Gd.

These five equations can be rearranged using the effective number density and cross section 

as

------- =-Neffaf(b (10.2-2)at

where Neff = t iN1 , of = ({ Ni<)/Neff.
1=1 i=i

In spite of using the effective quantities, a large error occurs in estimating gadolinium 

number densities around the burnout time. For this reason, MASTER-3.0 treats specially 

the microscopic cross section and depletion behaviors of burnable absorber in order to 

reduce the error coming from large time step.
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10.3 Fission Product Chain

10.3.1 Xenon and Iodine Depletion

The differential equations of the fission product poison Xe135 and its precursor I135 are 

defined by the following:

^ = -XII(t) + YIE^ (10.3-1)
dt

~~ = ^,I(t) +Yx£f<t>-XxX(t)-Gxtt> X<t)
dt

where I(t) 

X(t)

Xi

Xx

Yi

Yx

2f

= number density of I135,

= number density of X135,

= decay constant of I135,

= decay constant of X135,

= yield fraction of I135,

= yield fraction of X135,

= macroscopic fission cross section,

G^ = xenon microscopic absorption cross section.

For equilibrium conditions, the number densities are calculated by

L= x,

% _ 'Mo* +YxEf0o

Mo

where L = number density of I135 at equilibrium state,

X= = number density of X135 at equilibrium state,

4>0 =

(10.3-2)
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For transient conditions, the number densities at time t are determined by the following 

equations:

I(t) = I(tJe^ (10.3-3)

X(t) = X(tJe +
(Y,+YJZ^

1-e -(Xx+ax4>0)At

+
(MtU-Y.iA)
(Ax +CTX*tt0 -^l)

-IrAt -e

where At = time interval.

10.3.2 Samarium and Promethium Depletion

The differential equations of the fission product Sm149 and its precursor Pm149 have the 

same form as those of Xe135 and I135.

5h!i = -XpP(t)+YpE,l|, 
dt

^^ = XPP(t)-os>S(t)

where P(t) = number density of P149,

S(t) = number density of S149,

Xp = decay constant of P149,

Yp = yield fraction of P149,

Og = samarium microscopic absorption cross section.

(10.3-4)

For equilibrium conditions, the solutions of the above equations simply become
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P, = YpEf^° , (10.3-5)
X p

g _ _ Y,z,
CTS>o Os‘

where = number density of P149 at equilibrium state,

So* = number density of S149 at equilibrium state.

For transient conditions, the number densities at time t are determined by the following 

equations:

P(t) = P(t0 )e~XpAt + Yp^f
XP

-cs>0At YpXf

t-

S(t) = S(tJ + 1-e

-XpAt

-CTg(^0At

+
(ApP(t0)-YpSf<t>0)

(os>0-X,)
g-ApAt _g_CTsMAt

(10.3-6)
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11. Burnup Correction Model

11.1 Cartesian Geometry

The modern coarse-mesh and nodal methods allow solving 3-dimensional global 

few-group LWR problems on an assembly-size mesh with an accuracy of the order of 

1 % in the average assembly power densities. Since, however, this degree of accuracy 

is limited to fresh initial core conditions, appropriate corrections are introduced to 

account for the nonlinear effects resulting from depletion and neutronic feedback in 

higher cycles.

The burnup correction model [35] is essential for the accuracy of nodal methods. 

Calculations based on 4 nodes per FA without burnup correction model showed an 

errors in FA average power of up to 3% while the 1 node per FA calculations with 

burnup correction model reduce the errors to a level of about 1%. Especially the 

burnup correction is very effective in the large spatial nodes which have significant 

burnup gradients.

The burnup correction model considers the absorption and fission macroscopic 

cross sections not to be homogenous within the node but to vary due to local burnup 

effects. The flux and cross section functions are the 2nd order of polynomial 

expansions:

#x,y,z) = (& + aim5i(x)+a2oo52(x)+aoio5i(y) + ao2o52(y)
+a0oi^i(z) + a0o2^2(z)

Z(x, y, z) = E + S ioo5i (x)+Sm, Wx) + SoioSi (y) + So20%2 (y)

+Sooi5i(z) + Soo2Wz)

where (f> = volume average flux,

E = volume average macroscopic cross section,

(T (x) = the same function as described in Eq. (2.1-4),
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aijk /sijk = expansion coefficients.

The expansion coefficients of flux and macroscopic cross section in Eq. (11.1-1) can 

easily be obtained from the known values at node surfaces. In the nodal balance 

equation the reaction rate is expressed as

V
— 1

y' z)(t,(X/ Y/ z)dV — X(|) + — (s 100a100 + s010a010 + s 001 a 001)

+ _ (S 200 a 200 "I" S 020 a 020 ® 002 a 002 )

5

(11.1-2)

Dividing Eq. (11.1-2) by the average flux leads to the definition of an effective flux- 

volume homogenized cross section which is used instead of the normal cross section in 

the nodal balance equation:

eff :Z+|I<S
100 a 100 "I" S 010 a 010 "I" S 001a 001 ) + ^(s

5
200 a 200 "I" S 020 a 020 ® 002 a^)A(ll.l-3)

Meanwhile, for the solution of the 1-dimensional equivalent diffusion equations the 

transverse integrated reaction rate is approximated by

av aw

Mu(u) =-------- ' 'I(u, v, w)c|)(u, v, w)dvd w
avaw o o

= XefVu(u) + Slu^(u) + 82u^2(u)
(11.1-4)

^ a v a w

where X|/u (u) =-------- ' 'c|)(u, v, w)dvdw.
avaw o o

XefV>) is used in the momentum equations instead of X\|/u (u) and the correction 

term of Eq. (11.1-4) is transferred to the right hand side of the momentum equations. 

The coefficients 8lu and S2u can be determined by the boundary conditions at 0 and au.
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Mx(0)-((|)-a100 -a200)(X-s100 -s200 )
(11.1-5)

Mx(ax)-((|) + a100 -a200 )(E + s100 -s200 )

5ix 8100((|) *Hoo) 8 200 100 (11.1-6)

200

where A£ = £eff-£.

In the same manner, Mu(0) and Mu(au) can be obtained for u = y, z.

11.2 Hexagonal Geometry

The burnup correction model considers the absorption and fission macroscopic 

cross sections not to be homogenous within the node but to vary due to local burnup 

effects. To make the problem simple, flux and cross section functions are 

approximated with six terms as follows:

<I>(X, Pz u, z) — (|) + a 1000 C, 2 (x) + a 2000 C, 2 (x) + a 0100 C, 2 (p) + a 0200 C, 2 (p) (n 2 1) 
Ta 0010 C, 1 (u) + a 0020 C, 2 (u) + a 0001 ^ 2 (z) + a 0002 ^ 2 (z)

£(X, p, U, z) = £ + S 1000 C, 2 (x) + S 2000 C, 2 (x) + S 0100 C, 2 (p) + s 0200 C 2 (P)

0010 C 1 (u) + S 0020 C 2 (u) +S 0001 C 1 (Z) T s 0002 C 2 (Z)

2 2 2 
where ^,(x)=sinh( — x), ^(x) = cosh( — x) — (1-e),

3
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i s
u="5x"Ty' v:

V? i i S Vs i
-x--y, p = --x+Ty, q=~x--y.

The expansion coefficients of flux and cross section can easily be obtained from the 

known values such as node-average and surface-average values. The reaction rate for 

the nodal balance equation is expressed in the same way as Cartesian geometry. The 

effective flux-volume homogenized cross section finally can be simply written as:

__ i l<i+j+k+m<2

£eff = £ + = t Cljkmaljkmsljkm (11.2-2)
9 i,j,k,m=0

which is actually used in the nodal balance equation.

11.3 Adjoint Burnup Correction 

11.3.1 Cartesian Geometry

In adjoint case the effective cross section are calculated using the forward flux expansion 

coefficients. The function M*(u) for the 1-dimensional equivalent adjoint diffusion 

equation is defined as

M*(u) =------- ' '£(u, v, w)9 (u, v, wjdvdw
"C&w 0 0

(11.3-1)

where

9 * (x, y, z) = 9 +am0hl(x) + a;00h2(x) + a;il0hl (y)+ a*020h2 (y) +a ^ h 1 (z) + a ;,(l2 h, (z).

In the same manner as the forward equation this function is approximated by

M: (n) = £^v: W + 8Lhi (U) + 8:.h, (n) (11.3-2)
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where \|/U*(u) =-------  ' '0 (11, v, w)dvdw.
wQO

The coefficients 8JU and Sju are determined fulfilling the following boundary conditions.

(11.3-3)

The final equations are similar to Eq. (11.1-6) of the forward case.

(11.3-4)

where AE = Eeff -E.

11.3.2 Hexagonal Geometry

In the adjoint burnup correction model for the hexagonal geometry is basically the 

same as that of forward case. The effective flux-volume homogenized cross section can 

be obtained as Eq. (11-2.2) with the corresponding adjoint values.
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12. Thermal Hydraulic Calculation

In MASTER-3.0 each radial node corresponds to an individual flow channel which is 

axially segmented at each plane. Thus, the thermal-hydraulic calculation is performed for 

each node in the active core as an outer iteration. The thermal-hydraulic calculation is 

composed of a heat balance calculation for moderator enthalpy and a calculation for average 

fuel temperature using a burnup versus linear power dependent correlation. MASTER-3.0 

has an additional capability of calculating moderator and fuel temperature distributions 

using COBRA3-C/P [36,37,38] or MATRA [ ] which allows transient calculations considering 

cross flow effects between channels as well as subchannel analyses.

12.1 Enthalpy Calculation

The enthalpy rise is computed from the bottom of each channel to the top. (See Figure 

12-1) To calculate the average enthalpy increment in each axial node the following 

equation can be defined.

h.-h + t ”AZk+— — AZ; (12.1-1)
10 m 2 m

k = 1

where h0

P,

= inlet enthalpy (J/kg),

= linear power density at node i (w/cm),

m = mass flow rate (kg/ sec),

AZ1 = axial height of node i (cm).

The calculated enthalpy in a node is converted to the moderator state properties such as 

moderator temperature and density based on the ASME steam table.
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AZi

AZi

Pi

1

t
ho m

Figure 12-1 One-Dimensional Description for Enthalpy Calculation

12.2 Fuel Temperature Calculation

The fuel temperature is calculated with a burnup versus power dependent correlation 

prepared by a fuel performance analysis code which accounts for exposure and linear heat 

rate-dependent physical changes in the fuel pellet, clad and pellet-to-clad gap. The fuel 

temperature correlation has the polynomial form or the table form.

Tf =Tm +/(P,E) (12.2-la)

Tf =Tm+(t biEi)P+(t ciEi)P2+(t diEi)P3 (12.2-lb)
i=0 i=0 i=0

where Tm = moderator temperature (°C),

Tf = fuel temperature (°C),

P = P0hgf (KW/cm),

P0 = linear power density (KW/ cm),

hgf = fraction of heat generated in the fuel,

E = fuel exposure (MWD/KgU),

hi, Ci, di = precalculated polynomial coefficients specific to fuel type.

Korea Atomic Energy Research Institute

94

Rev. 0



MASTER-3.0 Methodology

12.3 Feedback Model

Prior to the first neutronics calculation, the initial moderator and fuel thermal properties are 

determined based on the input values or the initial power distribution. The thermal 

feedback calculations follow each neutronics calculation whenever feedbacks are required. 

New moderator temperatures and densities are calculated from the heat generation rate of 

the fuel. Then, new fuel temperatures are determined using the fuel temperature 

correlation which is a function of power and burnup. Meanwhile, the cross section table 

contains microscopic cross sections evaluated at a reference state and their derivatives with 

respect to boron concentration, fuel temperature, and moderator temperature and density. 

The cross sections are assumed to vary linearly with those quantities for small changes about 

any given point. The dependence of the cross sections on the thermal-hydraulic 

parameters is approximated by the inclusion of the first derivative of the cross section (see 

section 6.3).

The update of moderator density leads to change of water and boron number densities.

= (1 + c(Tm - )) (12.3-la)
PmO

N
B10 _ PPm * jqH2o *________ V________

106 H2° fgioMgio + (1 - fgio )MBu
(12.3-lb)

where c

ppm
Ibid

MH2o

mb10

Mbii

= correction factor for thermal expansion,

= boron concentration,

= natural abundance of B10 (19.80 a/o by default), 

= molecular weight of TEO (=18.016 g),

= atomic weight of B10 (=10.0129 g),

= atomic weight of B11 (=11.0093 g).
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12.4 COBRA3-C/P and MATRA Implementation

MASTER-3.0 has a capability of calculating the thermal-hydraulic quantities using 

COBRA3-C/P [36,37,38] or MATRA [39] by option. It allows three-dimensional transient 

calculations as well as subchannel analyses without any help of other codes and enables to 

keep the consistency between steady-state and transient results.

The conservation equations of the two-phase flow are expressed for the mixture 

quantities in 1-dimensional time-dependent form. The separated slip flow is assumed in 

each subchannel, and the void fraction distribution is evaluated as a function of enthalpy, 

heat flux and pressure. The fuel pin temperatures are calculated from the radial heat 

conduction equation, and their couplings to the coolant temperatures determining heat 

transfer dynamics are realized by appropriate models. The conservation equations for 

mass, momentum and energy are one-dimensional in axial direchon. In COBRA3-C/P the 

basic conservation equation is simply described for a subchannel i connected to only one 

adjacent subchannel j.

The continuity equation can be written as

AM+dm-
dt dx

: -W. (12.4-1)

where A; = cross flow area of subchannel i,

pi = moderator density of subchannel i, 

m; = mass flow rate of subchannel i,

wy = diversion crossflow coming to subchannel i from neighboring subchannel j.

to express the mass balance taking into account the diversion crossflow wtJ per unit length.

Since the turbulent crossflow doesn't contribute to net mass exchange, it is not included in 

this equation.

The energy equation is
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1 dh; dh;
-----------------------------— + —-

Ueff dt dx
—-(h, -h,)^i-(T, -Tj)—+ (h. 
m; m; m; m;

(12.4-2)

where ueff

Wijt

h

T

q'
Cij

IT

= effective velocity for energy transport,

= turbulent cross flow coming from neighboring subchannel j, 

= enthalpy,

= temperature,

= linear heat flux on the surface,

= thermal conduction coefficient,

= enthalpy carried by diversion cross flow.

The axial momentum equation

1 dmi 2u. 9pi l dVi 
A; dt 1 dt dx

-PigcCOS0 ^(ui-uj)wij + — (2u; -u*)w;j

(12.4-3)

where u 

u* 

P

P
k

v
V ' 
0 

gc 
0

fT

= subchannel flow velocity,

= crossflow velocity,

= two-phase density,

= pressure,

= grid-loss coefficient,

= liquid specific volume,

= effective specific volume for momentum,

= two-phase friction multiplier,

= gravitational constant,

= orientation of channel with respect to vertical, 

= turbulent momentum factor.

It includes the axial pressure gradient, its transient components, friction, spatial acceleration
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and elevation pressure drop terms.

The transverse momentum equation

dt dx
4- (|)C„Wii = (|)(P, - P, ) (12.4-4)

where — = transverse momentum parameter,

P = pressure,

Cjj = loss of friction for transverse cross flow,

takes into account the momentum coupling between two adjacent subchannels. Setting the 

transverse momentum parameter to zero neglects the crossflow. This is equivalent to a 

conventional parallel channel model. To complete the system of conservation equations, 

included are correlations for single-phase friction factor and corresponding two-phase 

multiplier, spacer loss coefficients, and bulk and subcooled boiling void fraction. As for 

the crossflow calculation, the empirical models serve for determining forced and turbulent 

single- and two-phase mixing, and for specifying the parameters appearing in the transverse 

momentum equation.

For the detailed steady-state and transient thermal-hydraulic analysis of hexagonal 

geometry MATRA is used instead. MATRA is improved on the basis of COBRA-IV-I [40]. 

MATRA has been provided with an improved structure, various functions, and models to 

give more convenient user environment and to enhance the code accuracy. Among them, 

the pressure drop model has been improved to be applied to non-square-lattice rod arrays, 

and the models for the lateral transport between adjacent subchannels have been improved 

to enhance the accuracy in predicting two-phase flow phenomena. The applicability of 

MATRA code to rod bundles has been examined for various experimental data including 

flow blockage test, enthalpy and flow distribution tests under single-phase and two-phase 

conditions, and so on. One can refer the detailed methodologies of MATRA from the 

reference [39].
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13. Iteration Strategy

13.1 Multi-level Coarse-mesh Rebalancing

The coarse-mesh rebalancing (CMR) is known as a very useful technique to accelerate 

an iterative convergence. The nodal balance equation with the leakage term is rewritten as

(13.1-1)

The iterative process to gain neutronics solution of Eq. (13.1-1) is based on the vectorized 

red-black Gauss-Seidel procedure. This solution procedure is applied only on the fine- 

mesh grid with usually a FA-mesh size. CMR is the simplest form of multi-level techniques. 

The CMR equations are obtained by introducing a coarse space-energy grid. Integrating 

Eq. (13.1-1) over mesh m and group g belonging to coarse-mesh block k, the CMR equations 

can be written

(R„+t t C =t t t E‘dk- + st (13.1-2)

where Rk =t t [(^ag + 1 + ^t)4>g(t)V]m/ me k, 
n, „ O' Atm g

P.=ttt <zre-A'(‘>v)

jku! =t t (—jguiV)m for m boxes on left surface of box k,
m g au
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jkur = t t (—jgUrV)m for m boxes on right surface of box k. 
mg au

The incoming currents of block k become the outgoing currents of block k' adjacent to k. 

They are multiplied by the driving factor dk, of these blocks which are the solutions of Eq. 

(13.1-2). Only a few interactions are performed on each level, but Eq. (13.1-2) on the 

coarsest grid should be solved exactly. If the coarsest grid becomes one-dimensional one, 

the eigenvalue is calculated by the Wielandt's method. Through repeating the restriction to 

coarser levels and the prolongation to finer levels the overall solution process is accelerated. 

The OMR acceleration is used for the nodal solution methods such as NEM, NIM and AFEN.

13.2 Asymptotic Extrapolation

The asymptotic extrapolation serves optionally for an additional acceleration of the 

neutronics iterative solution procedure. It is carried out on the finest-mesh and performed 

for partial currents, transverse leakages and average neutron fluxes. The asymptotic 

solution is approximated by three successive solutions on the finest-mesh if the asymptotic 

behavior of the flux convergence is achieved. This can be applied for the NEM, NIM and 

AFEN nodal solution methods.
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14. Kinetic Parameters

MASTER-3.0 calculates effective delayed neutron fractions, delayed neutron precursor 

decay constants by solving forward and adjoint diffusion equations. The delayed neutron 

yields are given by

t t Pl8vijAdv
|i, = v ' '-------------------- (14-1)

't t vx;Adv
v i g

where (3|g = fraction of fission neutrons from the j-th nuclide in precursor group i from 

group g,

vEJfg = macroscopic fission cross section for the j-th nuclide in group g.

The effective delayed neutron fraction is then

't t Cx.XvL^dV
(U,=-----------------V-L~^-------------------------------------------- (14-2)

'(d-t P,)t P,t t <fe>vI!AdV
V i g i ) g

where (f>* = adjoint average flux for group g,

Xig = neutron spectrum for delayed group i from group g, 

X = prompt neutron fission spectrum from group g.

The total effective delayed neutron fraction is then

Pelf - t Peff, (14-3)
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The corresponding precursor decay constant is calculated by

't t Pi^ZiAdV
v i g

't t (PLvzlt )/%dV
v i g

where XI = precursor decay constant of the j-th nuclide in precursor group i.

The average inverse neutron velocity (sec/cm) can be obtained by using the following 

formula:

1
^dV

1

'^;^dv % o
(14-5)

where v 0 = 2200 m/sec.

The prompt neutron lifetime, t, is given by

't t
v i g

(14-6)

Delayed neutron yields and decay constants listed in Tables 14-1 and 14-2 are taken from 

ENDF/B-V.
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Table 14-1 Delayed Neutron Yields

Group Th-232 U-233 U-234 U-235 U-236 U-238 Pu-239 Pu-240 Pu-241 Pu-242

1 .034 .086 .013 .038 .013 .013 .038 .028 .010 .028

2 .150 .274 .137 .213 .137 .137 .280 .273 .229 .273

3 .155 .227 .162 .188 .162 .162 .216 .192 .173 .192

4 .446 .317 .388 .407 .388 .388 .328 .350 .390 .350

5 .172 .073 .225 .128 .225 .225 .103 .128 .182 .128

6 .043 .023 .075 .026 .075 .075 .035 .029 .016 .029

total .0151 .00685 .0151 .0151 .00223 .00321 .00549 .00321

Table 14-2 Delayed Constants (sec1) for delayed neutron groups

Grou Th-232 U-233 U-234 U-235 U-236 U-238 Pu-239 Pu-240 Pu-241 Pu-242

1 .01237 .01258 .01323 .01272 .01323 .01323 .0129 .01294 .0128 .01294

2 .0334 .03342 .03212 .03174 .03212 .03212 .0311 .03131 .0299 .03131

3 .121 .131 .139 .116 .139 .139 .134 .135 .124 .135

4 .321 .303 .359 .311 .359 .359 .332 .333 .352 .333

5 1.21 1.27 1.41 1.40 1.41 1.41 1.26 1.36 1.61 1.36

6 3.29 3.14 4.03 3.87 4.03 4.03 3.21 4.03 3.47 4.03
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15. Control Rod Model

15.1 Control Rod Cross Section

The control rod worth is treated using the delta macroscopic cross section concept. 

The insertion of control rods is described by adding burnup-dependent delta macroscopic 

cross sections of control rod to those of the unrodded assembly.

+ AE (15.1-1)without cr

The rodded assemblies are also treated according to the simplified equivalence theory. 

When the control rod cross sections are provided from single assembly calculations, the 

heterogeneity factors f of unrodded and rodded fuel assemblies are considered as follows:

(15.1-2)

where the subscripts c and u denote rodded and unrodded assembly, respectively.

15.2 Heterogeneous Control Rod Model

To calculate the worth of control rods partially inserted in the axial direction, the control 

rod cross sections are weighted with flux and volume [41]. If the control rod is partially 

inserted in the axial direction in a given node in shown in Fig. 15-1, we can express the 

macroscopic cross section of the node as

£(z)=£,+8£(z) (15.2-1)

where £0 = macroscopic cross section of unrodded node, 

S£(z) =0 ( 0 < z < zi)
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= A£cr ( zi < z < 1).

The flux solution is assumed as a quartic polynomial according to NEM.

4

(p(x,y,z)= t a^(x)5j(y)5k(z)
i,j,k=0

Integrating the cross sections with flux over the xy-direction which is 

leads to the following balance equation:

1 1 1
— 'X(z)(p(x,y,z)dxdydz= 'E0\|/(u)du + 'A£\|/(u)du
^ V 0 Zj

The right hand side of the above equation can be written as

RHS = (£0 + A£(l - z 1 ))(|) + RHS 0

where

RHS0 = Ae[ a001((l-z1")-(l-z1)j

+ aoo2 (-2(l-z13) + 3(l-z1")-(l-z1)j 

+ aoo3(-3(l-z14) + 6(l-z13)-3(l-z1")j

+ aoo4(-6(l-zy )+ 15(1-z,4)-12(1-z,3) +3(1-z,"

Vrz-Vlz 
“001 — - /

002

Vrz+Vl

a 003 _
jrz jrz +jlz “jlz , 1

12D/Z,
+ —a 001 /

a 004
I I I ' I

12D/Zl 002 7

(15.2-2)

denoted by \|/(u)

(15.2-3)

(15.2-4)
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(f> = 'x|/(u)du •
0

and a00i represents the expansion coefficient of X|/(z) which is known during iteration. 

By dividing the result of Eq. (15.2-4) by the node average flux we can get the flux volume 

homogenized cross section.

£hom = £n +A£(l-Zl) + ^^ (15.2-5)

where £0 + A£(l - z 1) is the volume-averaged cross section and the additive term, RHS 0, 

represents the contribution of higher-order flux momentums. For the correction of the 

momentum equations, the weighted residual method is introduced.

— 'w j (u)£(z)(p(x, y, z)dxdy dz
V V

where w; (u) = weighting function .

If we let W;(u) be q, (z), the resulting solution becomes

(15.2-6)

'h1(z)£(z)\|/(z)dz
0

1 1
'h1(z)£0\|/(z)dz + A£ '(2z-l)\|/(z)dz

0 Zi
1 1
'hi(z)£0\|/(z)dz-A£ '\|/(z)dz + 2A£ 'z\|/(z)dz

0 Zl Z-L

(15.2-7)

where
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2 AX 'z\|/(z)dz = RHS1

= AX(|)(l-z1") + a001 —((1-z^ )-(l-z1 ))

+ aoo2 (-3(1_zi4) + 4(1-z13)-(1-z1^))

+ aom(—™(1-zi5) + 9(1-z14)-4(1-z13))
5

+ a004 (-10(1 - z/) +24(1 - z/)-18(1-z14) +4(1-z^ ))]

Using the flux volume homogenized cross section Xhom Eq. (15.2-7) can be rewritten as

'h1(z)X(z)\|/(z)dz

= 'h1(z)X0\|/(z)dz-AX(l-z1)c|)-RHS0 +RHS1
0
1 RHS

= X (z)Xho>(z)dz - (AX(1 -z,) +------ ^

(15.2-8)

X^+Xa+^ + rhs,
3 3

In the same manner, letting w;(u) be (u) yields the correction term of the 2nd 

momentum equation.

'h2(z)X(z)\|/(z)dz
0

'h2(z)X0\|/(z)dz + AX '(6z(l - z) - l)\|/(z)dz

(15.2-9)

'h 2 (z)X 0xg(z)dz - AX '\|/(z)dz + AX '(6z-6z2)\|/(z)dz

where
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-6AX 'z2\|/(z)dz
zi

= rhs2
= -Ax[l(|)(l-z^ ) + a001 (3(1-z14)-2(1-z1" ))

+ aoo2 (—z"(1-zi5) + 9(1-z14)-2(1-z13))
5

+ aoo3(-12(l-z16) + —-(1-z15)-9(1-z14))

+ aoo4(—— (1-zi7) + 60(1-z16)—— (1-z15) + 9(1-z14))]
/ 5

It can be rearranged as

1
'h2(z)X(z)\|/(z)dz

0
1

= xh2(z)X0\|/(z)dz-AX(l-z1)(|) -RHSq + SRHS^^ +RHS2 (15.2-
o

= 'h,(z)Xhon>(z)dz -(AX(1 -zj+ — acor) + 3RHS, + RHS,
0 (|) 5 35

Therefore, for the node with control rod partially inserted the volume homogenized cross 

section is replaced by the flux volume homogenized one in all equations as expressed in Eq. 

(15.2-5), and then the 1st and 2nd momentum equations are corrected using Eq. (15.2-8) and 

Eq. (15.2-10).
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control
rod

Figure 15-1 Control Rod Partially Inserted in the Axial Direction

MASTER has another heterogeneous control rod model [42] to correct for the rod 

cusping effect. In this model the flux redistribution should be properly reflected in the 

homogenized nodal cross section. In addition, the correctional nodal coupling coefficients 

(CNCC) which are normally obtained from a two-node calculation should be determined 

such that the intranodal cross section variation can be considered during the determination 

process. For NANM and NNEM the intranodal flux distribution in a partially rodded node 

is obtained by solving a three-node problem by the fine mesh finite difference scheme. The 

flux weighting factor and the interface currents used to determine the CNCC can be readily 

obtained from the intranodal flux solution.

Consider an axial three-node domain as shown in Figure 15-2. The middle node is 

partially rodded and it is adjacent to a fully rodded and an unrodded node. For the three- 

node problem, a transverse-integrated neutron balance equation can be obtained in the same 

way as the two-node nodal problem. Since the transverse-integrated equation is one­

dimensional and there are only a few partially rodded nodes in a reactor, it is feasible to
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employ a fine mesh finite difference scheme to solve the transverse-integrated equation, 

instead of employing the analytic nodal method for the three-node problem. For the finite- 

differenced one-dimensional problem, the coefficient matrix becomes primarily tridiagonal 

and the Gauss elimination can be applied efficiently to solve the linear system.

To solve a one-dimensional second-order differential equation, two boundary or 

constraint conditions must be specified. In a three-node problem, the boundary conditions 

may be specified at the two boundaries in terms of the neutron current. Another possibility 

is to use the node average fluxes of the rodded and unrodded nodes as the two constraints. 

Both the current and the node average flux are available from the previous CMFD 

calculation when the nonlinear nodal method is employed. The node average flux constraint 

is then used because it assures the fine mesh solution is consistent with the coarse mesh 

solution as far as the node average fluxes are concerned.

The intranodal flux distribution determined from the three-node problem is used to 

determine the currents at the upper and lower interfaces of the middle node. The interface 

currents can then be used to determine the CNCC. The solution of the three-node problem is 

performed every time when a nodal update is performed, resulting in the new flux 

weighting factors and the CNCC to be used in the subsequent CMFD calculations.

Fully RviUkr) FTutq)

Fit i uly RgWwI

Ltroddrf Hud^ti)

Figure 15-2 Three-Node Fine Mesh Problem

Korea Atomic Energy Research Institute

110
Rev. 0



MASTER-3.0 Methodology

16. Detector Model

16.1 Detector Reaction Rate

The predicted reaction rates in in-core detectors are calculated for each thimble in an 

axial region as:

R(r) = t M
g

(16.1-1)

where = absorption cross section of a detector for group g,

<et (r) = heterogeneous flux for group g at the position r where a detector exists.

In the movable detector the number densities of detectors are assumed to be constant 

with burnup, but those of the fixed in-core detectors are depleted in a core.

The depletion of fixed in-core detectors is performed as follows:

-t cfg>gett

Ndet (t) = Ndet (0)e 8 (16.1-2)

where Ndet (t) = detector number density at time t,

Odg‘ = detector microscopic absorption cross section for group g.

Since detectors are in most cases positioned into instrument thimbles which have no burnup 

values, the number density versus microscopic cross section table is prepared unlikely to 

other cross sections.
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16.2 Analytic Constants for Flux Mapping

16.2.1 Detector Signal-to-Power Factor

In the CE-type plant the signal-to-power factor (V\") for the cores where the 

instrumented assemblies are modeled is needed in order to convert the signals from detector 

into corresponding powers in CECOR [43]. The value W' is defined as:

W'(r) = P(r)
Rdet(r)

(16.2-1)

where p (r) = assembly power integrated over the detector length,

Rdet (r) = average activation rate per unit detector length.

16.2.2 Detector Coefficient

The detector coefficients required are determined depending on what flux mapping 

system they are used for. The followings show coefficients for CECOR and INCORE [44], 

respectively.

CECOR coupling coefficient = -ijk
M,p-

(16.2-2)

where Pljk = power in the assembly located at (i, j, k),

Pn = power in an assembly which has a common surface with the assembly at

(F j, k),

N = the number of assemblies which have a common surface with the assembly at

(k j, k).
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where

INCORE constant =
Pijk (16.2-3)

K = energy release per fission,

Og6t = detector cross section for group g,

(|)get = heterogeneous flux for group g in the position where the detector exists.
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17. Xenon Dynamics

The xenon dynamics module solves the time-dependent iodine/ xenon and 

promethium/samarium differential equation described in section 10.3. The time 

discretization is performed by use of Hermite polynomials. The nodal flux shapes are 

approximated by linear functions within each time interval considered.

The iodine and promethium equations among Eq. (10.3-1) and Eq. (10.3-4) can be 

written again with linear approximation of the flux shape in a time interval as

“7T = ao +ai(t-t0) —(17-1) 
dt

— = b0 +b1(t-t0)-XpP 
dt

where a0 =yI2f<|>(t0), a2 = y^ 

b„ =ypZf#to), tq =yPxf

At

#t)-#t„)
At

These equations can be solved analytically by

I(t) = c0+c1(t-t0) + c2e-Xl(t-to) 

P(t) = d0+d1(t-t0) + d2e-Xp(t-to)

(17-2)

XTa0 -a, a,
where c0 =-----—----- , c, = —, c2 = I(t0)-c0/

Aj Aj

do = ^pb°2 bl / di =^Lz d2 =P(t0)-d0
A' p AP

If the concentration I . and P +1 for a considered time t +1 are known, the time
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discretization of the xenon and samarium equations among Eq. (10.3-1) and Eq. (10.3-4) is 

performed using Hermite polynomials. The general form of those equations can be 

expressed as

y = g(y,t) (17-3)

Then, the time discrete equations with Hermite polynomials read

yn+l -yn +_^L(& n+l + g n) + —^(g n+1 - & n ) + R (17^)

where Atn = time interval,

R = remaining error of 4th order.

For each time step the calculation of the iodine/xenon and the promethium/samarium 

concentrations is performed iteratively together with the steady-state flux solution process.
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18. Power Shape Matching

In this section a nodal method is presented how a given (target) power distribution can be 

generated. This is accomplished by adjusting the absorption cross sections (Xal,Xa2) 

which are free parameters of the system model. The system parameters are then coincided 

with the core conditions of the core eigenvalue and flux distributions. This kind of nodal 

method is called the backward nodal solution method in the sense that cross sections are 

determined for given fluxes and eigenvalue. The results of this method are the absorption 

cross sections which form a consistent set of eigenvalue, currents and fluxes of the 

forward(normal) nodal solution. The adjusted cross sections are obtained by solving 

forward nodal equation iteratively.

The starting point for the derivation of the backward nodal solution is the two-group 

neutron diffusion equation in Pi form.

V Jg (r)+(Z,g (r) +1 Zgg, (r)) (pg (r)
^ (2.1-la)

= t 2g'gM(Pg'(r)+Yt t v2|g'(r)(pg'(r)
g'<g A s' i

Jg(r)= - Dg(r)v <pg (r) (2.1-lb)

Integrating Eq. (2.1-1) over a node volume leads to the exact nodal balance equation as 

follows:

t
1

a [fa +e)-fa+e)l+(* :,+t y,
g'>g

=t £"A"+it
g'<g ^ g'

(2.1-2a)

+m
Jgus Igus du s

(2.1-2b)
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In the backward nodal expansion method (NEM), the surface average fluxes can be 

expanded into a quartic polynomial with orthogonal functions, which is exactly the same as 

normal NEM.

<u(u) = t aii>u h,(u) (2.1-4)
i=0

The first three coefficients of the right hand side of Eq. (2.1-4) can be expressed by nodal 

balance equations and continuity conditions, and the third and fourth order coefficients 

a3gu and a4gu can be determined by solving the one-dimensional equivalent diffusion 

equations with weighted residual method.

The equations for the outgoing currents on the left and right surfaces are given as functions 

of the diffusion coefficients, the incoming currents, the one-dimensional flux expansion 

coefficients (a3gu, a4gu) and the given nodal extrapolated fluxes.

C = <* +C) +<* C + <* G +<* *

3gu (2.1-7)

where (f>™ = target flux,

D gu
-lgU 1/6 + 2D gu

C2gu -1-4C!gu ~C3gu/

-3gu
-c

lgu 3gu

lgu

gu3/4 +3D ^

C4gu — Clgu 6Dgu C3gu,

With the partial currents, the target fluxes and cross sections, the model free parameters
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(£al , £a2) can be determined from the node neutron balance equation:

tn = <-l? -«s k + yt xK vzrg- ^) / k
K g'

t :=(-L=+t

(18-1)

where

l- = t [fa + c)- fa + e)] m
u=x,y,z «u

Eq. (18-1) is solved only for the fuel region in the core. For the reflector region forward 

nodal calculation is performed.
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19. One-dimensional Model

A 3-D neutronics code can be considered as the ultimate means of achieving high 

fidelity in the neutronic reactor core design and simulation. Nonetheless the 1-D neutronics 

model is often needed to replace the 3-D model in many practical circumstances. In the case 

that a 3-D model is avail, it is possible to generate the 1-D model through a consistent radial 

collapsing procedure. The 1-D kinetics equation can be derived by integrating the 3-D time- 

dependent neutron diffusion equation over the radial domain. The solution of the 1-D 

kinetics equation is relatively simple because it involves only a block tridiagonal linear 

system which can be solved directly by the Gaussian elimination scheme. However, it is 

important in the 1-D calculation to conserve the axial currents which ensure reproducing the 

reference 3-D results. This is realized in the HAMOCE code [45]. MASTER-3.0 is then 

implemented to calculate the 3-D consistent 1-D cross sections for the HAMOCE and 1-D 

model of MASTER-3.0 itself. The 1-D cross sections are created by calculating the following 

quantities for each axial region k.

=t VIjk /£ VIjk, VIjk = volume of node (i, j,k)
ij ij

«=t «v* /1 f v*,
ij ij

D, =t t % <t>f v-k /1 <|>f v-k,

« s=t t |k<|>f v»k/t »’k V
IJ

ijk

ijk
% Yg

% Yg

t 21 =t t t ^ / t Of Y ' .
IJ IJ

<B„ =t V* / t V*
IJ IJ

(7k = t (7ljk d)i]k ^ljk 1 ± ^ijk ^ljk
w ag, iso X w ag, iso Y g

ij

= t t V%k , iso = Xe"' ,Sm"',

(19-1)
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Y1S0’k =t Y1S0’ljk N«k Vljk / t N«k Vljk , Y=fission yield, 
ij ij

iso=Pm149,1135 , Xe135 , fis=fissile material,

Tk = £ T%k Vljk / £ N Vljk , Tm = moderator temperature
ij ij

Dm=t Dm \ t Vljk ,Dk = moderator density
ij ij

Tk=t Tf Vijk/t Vljk,Tk= fuel temperature
ij ij

DB;k=t
ij ij

DB9 = radial buckling, Vjk =ay az, Vlk =ax az
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with Improved Analytic Solution)# 4 #44 4 4 45-4 44 44 4 43#4 44 43
# 44 4 44- 444 44# 444 44# #33# 444# 444 cobra3-c/p 3
# MATRA 333 444# 4 #3 ##3 44. MASTER-3.0 33# #4 #44 3#4

33 4444 444 wh44 ce4 3# 4 smart 443# 444 44 44443 3 
444 44 4443 #33 4# 4-3# #44# 4#3 ##3 44-

#44443

(104444)

MASTER-3.0 334##, 3##4, 3###, 4444, 4444, 4 
44, #44 ^ 43, CASMO-3, HELIOS, COBRA, MATRA
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